/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ // Not for optimization. Do not disable. #define SPINE_TRIANGLECHECK // Avoid calling SetTriangles at the cost of checking for mesh differences (vertex counts, memberwise attachment list compare) every frame. //#define SPINE_DEBUG using UnityEngine; using System; using System.Collections.Generic; namespace Spine.Unity { public delegate void MeshGeneratorDelegate (MeshGeneratorBuffers buffers); public struct MeshGeneratorBuffers { /// The vertex count that will actually be used for the mesh. The Lengths of the buffer arrays may be larger than this number. public int vertexCount; /// Vertex positions. To be used for UnityEngine.Mesh.vertices. public Vector3[] vertexBuffer; /// Vertex UVs. To be used for UnityEngine.Mesh.uvs. public Vector2[] uvBuffer; /// Vertex colors. To be used for UnityEngine.Mesh.colors32. public Color32[] colorBuffer; /// The Spine rendering component's MeshGenerator. public MeshGenerator meshGenerator; } /// Holds several methods to prepare and generate a UnityEngine mesh based on a skeleton. Contains buffers needed to perform the operation, and serializes settings for mesh generation. [System.Serializable] public class MeshGenerator { public Settings settings = Settings.Default; [System.Serializable] public struct Settings { public bool useClipping; [Space] [Range(-0.1f, 0f)] public float zSpacing; [Space] [Header("Vertex Data")] public bool pmaVertexColors; public bool tintBlack; [Tooltip("Enable when using Additive blend mode at SkeletonGraphic under a CanvasGroup. " + "When enabled, Additive alpha value is stored at uv2.g instead of color.a to capture CanvasGroup modifying color.a.")] public bool canvasGroupTintBlack; public bool calculateTangents; public bool addNormals; public bool immutableTriangles; static public Settings Default { get { return new Settings { pmaVertexColors = true, zSpacing = 0f, useClipping = true, tintBlack = false, calculateTangents = false, //renderMeshes = true, addNormals = false, immutableTriangles = false }; } } } const float BoundsMinDefault = float.PositiveInfinity; const float BoundsMaxDefault = float.NegativeInfinity; [NonSerialized] readonly ExposedList vertexBuffer = new ExposedList(4); [NonSerialized] readonly ExposedList uvBuffer = new ExposedList(4); [NonSerialized] readonly ExposedList colorBuffer = new ExposedList(4); [NonSerialized] readonly ExposedList> submeshes = new ExposedList> { new ExposedList(6) }; // start with 1 submesh. [NonSerialized] Vector2 meshBoundsMin, meshBoundsMax; [NonSerialized] float meshBoundsThickness; [NonSerialized] int submeshIndex = 0; [NonSerialized] SkeletonClipping clipper = new SkeletonClipping(); [NonSerialized] float[] tempVerts = new float[8]; [NonSerialized] int[] regionTriangles = { 0, 1, 2, 2, 3, 0 }; #region Optional Buffers // These optional buffers are lazy-instantiated when the feature is used. [NonSerialized] Vector3[] normals; [NonSerialized] Vector4[] tangents; [NonSerialized] Vector2[] tempTanBuffer; [NonSerialized] ExposedList uv2; [NonSerialized] ExposedList uv3; #endregion public int VertexCount { get { return vertexBuffer.Count; } } /// A set of mesh arrays whose values are modifiable by the user. Modify these values before they are passed to the UnityEngine mesh object in order to see the effect. public MeshGeneratorBuffers Buffers { get { return new MeshGeneratorBuffers { vertexCount = this.VertexCount, vertexBuffer = this.vertexBuffer.Items, uvBuffer = this.uvBuffer.Items, colorBuffer = this.colorBuffer.Items, meshGenerator = this }; } } public MeshGenerator () { submeshes.TrimExcess(); } #region Step 1 : Generate Instructions /// /// A specialized variant of . /// Generates renderer instructions using a single submesh, using only a single material and texture. /// /// The resulting instructions. /// The skeleton to generate renderer instructions for. /// Material to be set at the renderer instruction. When null, the last attachment /// in the draw order list is assigned as the instruction's material. public static void GenerateSingleSubmeshInstruction (SkeletonRendererInstruction instructionOutput, Skeleton skeleton, Material material) { ExposedList drawOrder = skeleton.drawOrder; int drawOrderCount = drawOrder.Count; // Clear last state of attachments and submeshes instructionOutput.Clear(); // submeshInstructions.Clear(); attachments.Clear(); var workingSubmeshInstructions = instructionOutput.submeshInstructions; #if SPINE_TRIANGLECHECK instructionOutput.attachments.Resize(drawOrderCount); var workingAttachmentsItems = instructionOutput.attachments.Items; int totalRawVertexCount = 0; #endif var current = new SubmeshInstruction { skeleton = skeleton, preActiveClippingSlotSource = -1, startSlot = 0, #if SPINE_TRIANGLECHECK rawFirstVertexIndex = 0, #endif material = material, forceSeparate = false, endSlot = drawOrderCount }; #if SPINE_TRIANGLECHECK object rendererObject = null; bool skeletonHasClipping = false; var drawOrderItems = drawOrder.Items; for (int i = 0; i < drawOrderCount; i++) { Slot slot = drawOrderItems[i]; if (!slot.bone.active) continue; Attachment attachment = slot.attachment; workingAttachmentsItems[i] = attachment; int attachmentTriangleCount; int attachmentVertexCount; var regionAttachment = attachment as RegionAttachment; if (regionAttachment != null) { rendererObject = regionAttachment.RendererObject; attachmentVertexCount = 4; attachmentTriangleCount = 6; } else { var meshAttachment = attachment as MeshAttachment; if (meshAttachment != null) { rendererObject = meshAttachment.RendererObject; attachmentVertexCount = meshAttachment.worldVerticesLength >> 1; attachmentTriangleCount = meshAttachment.triangles.Length; } else { var clippingAttachment = attachment as ClippingAttachment; if (clippingAttachment != null) { current.hasClipping = true; skeletonHasClipping = true; } attachmentVertexCount = 0; attachmentTriangleCount = 0; } } current.rawTriangleCount += attachmentTriangleCount; current.rawVertexCount += attachmentVertexCount; totalRawVertexCount += attachmentVertexCount; } #if !SPINE_TK2D if (material == null && rendererObject != null) current.material = (Material)((AtlasRegion)rendererObject).page.rendererObject; #else if (material == null && rendererObject != null) current.material = (rendererObject is Material) ? (Material)rendererObject : (Material)((AtlasRegion)rendererObject).page.rendererObject; #endif instructionOutput.hasActiveClipping = skeletonHasClipping; instructionOutput.rawVertexCount = totalRawVertexCount; #endif if (totalRawVertexCount > 0) { workingSubmeshInstructions.Resize(1); workingSubmeshInstructions.Items[0] = current; } else { workingSubmeshInstructions.Resize(0); } } public static bool RequiresMultipleSubmeshesByDrawOrder (Skeleton skeleton) { #if SPINE_TK2D return false; #endif ExposedList drawOrder = skeleton.drawOrder; int drawOrderCount = drawOrder.Count; var drawOrderItems = drawOrder.Items; Material lastRendererMaterial = null; for (int i = 0; i < drawOrderCount; i++) { Slot slot = drawOrderItems[i]; if (!slot.bone.active) continue; Attachment attachment = slot.attachment; var rendererAttachment = attachment as IHasRendererObject; if (rendererAttachment != null) { AtlasRegion atlasRegion = (AtlasRegion)rendererAttachment.RendererObject; Material material = (Material)atlasRegion.page.rendererObject; if (lastRendererMaterial != material) { if (lastRendererMaterial != null) return true; else lastRendererMaterial = material; } } } return false; } public static void GenerateSkeletonRendererInstruction (SkeletonRendererInstruction instructionOutput, Skeleton skeleton, Dictionary customSlotMaterials, List separatorSlots, bool generateMeshOverride, bool immutableTriangles = false) { // if (skeleton == null) throw new ArgumentNullException("skeleton"); // if (instructionOutput == null) throw new ArgumentNullException("instructionOutput"); ExposedList drawOrder = skeleton.drawOrder; int drawOrderCount = drawOrder.Count; // Clear last state of attachments and submeshes instructionOutput.Clear(); // submeshInstructions.Clear(); attachments.Clear(); var workingSubmeshInstructions = instructionOutput.submeshInstructions; #if SPINE_TRIANGLECHECK instructionOutput.attachments.Resize(drawOrderCount); var workingAttachmentsItems = instructionOutput.attachments.Items; int totalRawVertexCount = 0; bool skeletonHasClipping = false; #endif var current = new SubmeshInstruction { skeleton = skeleton, preActiveClippingSlotSource = -1 }; #if !SPINE_TK2D bool isCustomSlotMaterialsPopulated = customSlotMaterials != null && customSlotMaterials.Count > 0; #endif int separatorCount = separatorSlots == null ? 0 : separatorSlots.Count; bool hasSeparators = separatorCount > 0; int clippingAttachmentSource = -1; int lastPreActiveClipping = -1; // The index of the last slot that had an active ClippingAttachment. SlotData clippingEndSlot = null; int submeshIndex = 0; var drawOrderItems = drawOrder.Items; for (int i = 0; i < drawOrderCount; i++) { Slot slot = drawOrderItems[i]; if (!slot.bone.active) continue; Attachment attachment = slot.attachment; #if SPINE_TRIANGLECHECK workingAttachmentsItems[i] = attachment; int attachmentVertexCount = 0, attachmentTriangleCount = 0; #endif object rendererObject = null; // An AtlasRegion in plain Spine-Unity. Spine-TK2D hooks into TK2D's system. eventual source of Material object. bool noRender = false; // Using this allows empty slots as separators, and keeps separated parts more stable despite slots being reordered var regionAttachment = attachment as RegionAttachment; if (regionAttachment != null) { rendererObject = regionAttachment.RendererObject; #if SPINE_TRIANGLECHECK attachmentVertexCount = 4; attachmentTriangleCount = 6; #endif } else { var meshAttachment = attachment as MeshAttachment; if (meshAttachment != null) { rendererObject = meshAttachment.RendererObject; #if SPINE_TRIANGLECHECK attachmentVertexCount = meshAttachment.worldVerticesLength >> 1; attachmentTriangleCount = meshAttachment.triangles.Length; #endif } else { #if SPINE_TRIANGLECHECK var clippingAttachment = attachment as ClippingAttachment; if (clippingAttachment != null) { clippingEndSlot = clippingAttachment.endSlot; clippingAttachmentSource = i; current.hasClipping = true; skeletonHasClipping = true; } #endif noRender = true; } } // Create a new SubmeshInstruction when material changes. (or when forced to separate by a submeshSeparator) // Slot with a separator/new material will become the starting slot of the next new instruction. if (hasSeparators) { //current.forceSeparate = hasSeparators && separatorSlots.Contains(slot); current.forceSeparate = false; for (int s = 0; s < separatorCount; s++) { if (Slot.ReferenceEquals(slot, separatorSlots[s])) { current.forceSeparate = true; break; } } } if (noRender) { if (current.forceSeparate && generateMeshOverride) { // && current.rawVertexCount > 0) { { // Add current.endSlot = i; current.preActiveClippingSlotSource = lastPreActiveClipping; workingSubmeshInstructions.Resize(submeshIndex + 1); workingSubmeshInstructions.Items[submeshIndex] = current; submeshIndex++; } current.startSlot = i; lastPreActiveClipping = clippingAttachmentSource; #if SPINE_TRIANGLECHECK current.rawTriangleCount = 0; current.rawVertexCount = 0; current.rawFirstVertexIndex = totalRawVertexCount; current.hasClipping = clippingAttachmentSource >= 0; #endif } } else { #if !SPINE_TK2D Material material; if (isCustomSlotMaterialsPopulated) { if (!customSlotMaterials.TryGetValue(slot, out material)) material = (Material)((AtlasRegion)rendererObject).page.rendererObject; } else { material = (Material)((AtlasRegion)rendererObject).page.rendererObject; } #else Material material = (rendererObject is Material) ? (Material)rendererObject : (Material)((AtlasRegion)rendererObject).page.rendererObject; #endif if (current.forceSeparate || (current.rawVertexCount > 0 && !System.Object.ReferenceEquals(current.material, material))) { // Material changed. Add the previous submesh. { // Add current.endSlot = i; current.preActiveClippingSlotSource = lastPreActiveClipping; workingSubmeshInstructions.Resize(submeshIndex + 1); workingSubmeshInstructions.Items[submeshIndex] = current; submeshIndex++; } current.startSlot = i; lastPreActiveClipping = clippingAttachmentSource; #if SPINE_TRIANGLECHECK current.rawTriangleCount = 0; current.rawVertexCount = 0; current.rawFirstVertexIndex = totalRawVertexCount; current.hasClipping = clippingAttachmentSource >= 0; #endif } // Update state for the next Attachment. current.material = material; #if SPINE_TRIANGLECHECK current.rawTriangleCount += attachmentTriangleCount; current.rawVertexCount += attachmentVertexCount; current.rawFirstVertexIndex = totalRawVertexCount; totalRawVertexCount += attachmentVertexCount; #endif } if (clippingEndSlot != null && slot.data == clippingEndSlot && i != clippingAttachmentSource) { clippingEndSlot = null; clippingAttachmentSource = -1; } } if (current.rawVertexCount > 0) { { // Add last or only submesh. current.endSlot = drawOrderCount; current.preActiveClippingSlotSource = lastPreActiveClipping; current.forceSeparate = false; workingSubmeshInstructions.Resize(submeshIndex + 1); workingSubmeshInstructions.Items[submeshIndex] = current; //submeshIndex++; } } #if SPINE_TRIANGLECHECK instructionOutput.hasActiveClipping = skeletonHasClipping; instructionOutput.rawVertexCount = totalRawVertexCount; #endif instructionOutput.immutableTriangles = immutableTriangles; } public static void TryReplaceMaterials (ExposedList workingSubmeshInstructions, Dictionary customMaterialOverride) { // Material overrides are done here so they can be applied per submesh instead of per slot // but they will still be passed through the GenerateMeshOverride delegate, // and will still go through the normal material match check step in STEP 3. var wsii = workingSubmeshInstructions.Items; for (int i = 0; i < workingSubmeshInstructions.Count; i++) { var m = wsii[i].material; Material mo; if (customMaterialOverride.TryGetValue(m, out mo)) wsii[i].material = mo; } } #endregion #region Step 2 : Populate vertex data and triangle index buffers. public void Begin () { vertexBuffer.Clear(false); colorBuffer.Clear(false); uvBuffer.Clear(false); clipper.ClipEnd(); { meshBoundsMin.x = BoundsMinDefault; meshBoundsMin.y = BoundsMinDefault; meshBoundsMax.x = BoundsMaxDefault; meshBoundsMax.y = BoundsMaxDefault; meshBoundsThickness = 0f; } submeshIndex = 0; submeshes.Count = 1; //submeshes.Items[0].Clear(false); } public void AddSubmesh (SubmeshInstruction instruction, bool updateTriangles = true) { var settings = this.settings; int newSubmeshCount = submeshIndex + 1; if (submeshes.Items.Length < newSubmeshCount) submeshes.Resize(newSubmeshCount); submeshes.Count = newSubmeshCount; var submesh = submeshes.Items[submeshIndex]; if (submesh == null) submeshes.Items[submeshIndex] = submesh = new ExposedList(); submesh.Clear(false); var skeleton = instruction.skeleton; var drawOrderItems = skeleton.drawOrder.Items; Color32 color = default(Color32); float skeletonA = skeleton.a, skeletonR = skeleton.r, skeletonG = skeleton.g, skeletonB = skeleton.b; Vector2 meshBoundsMin = this.meshBoundsMin, meshBoundsMax = this.meshBoundsMax; // Settings float zSpacing = settings.zSpacing; bool pmaVertexColors = settings.pmaVertexColors; bool tintBlack = settings.tintBlack; #if SPINE_TRIANGLECHECK bool useClipping = settings.useClipping && instruction.hasClipping; #else bool useClipping = settings.useClipping; #endif bool canvasGroupTintBlack = settings.tintBlack && settings.canvasGroupTintBlack; if (useClipping) { if (instruction.preActiveClippingSlotSource >= 0) { var slot = drawOrderItems[instruction.preActiveClippingSlotSource]; clipper.ClipStart(slot, slot.attachment as ClippingAttachment); } } for (int slotIndex = instruction.startSlot; slotIndex < instruction.endSlot; slotIndex++) { var slot = drawOrderItems[slotIndex]; if (!slot.bone.active) { clipper.ClipEnd(slot); continue; } var attachment = slot.attachment; float z = zSpacing * slotIndex; var workingVerts = this.tempVerts; float[] uvs; int[] attachmentTriangleIndices; int attachmentVertexCount; int attachmentIndexCount; Color c = default(Color); // Identify and prepare values. var region = attachment as RegionAttachment; if (region != null) { region.ComputeWorldVertices(slot.bone, workingVerts, 0); uvs = region.uvs; attachmentTriangleIndices = regionTriangles; c.r = region.r; c.g = region.g; c.b = region.b; c.a = region.a; attachmentVertexCount = 4; attachmentIndexCount = 6; } else { var mesh = attachment as MeshAttachment; if (mesh != null) { int meshVerticesLength = mesh.worldVerticesLength; if (workingVerts.Length < meshVerticesLength) { workingVerts = new float[meshVerticesLength]; this.tempVerts = workingVerts; } mesh.ComputeWorldVertices(slot, 0, meshVerticesLength, workingVerts, 0); //meshAttachment.ComputeWorldVertices(slot, tempVerts); uvs = mesh.uvs; attachmentTriangleIndices = mesh.triangles; c.r = mesh.r; c.g = mesh.g; c.b = mesh.b; c.a = mesh.a; attachmentVertexCount = meshVerticesLength >> 1; // meshVertexCount / 2; attachmentIndexCount = mesh.triangles.Length; } else { if (useClipping) { var clippingAttachment = attachment as ClippingAttachment; if (clippingAttachment != null) { clipper.ClipStart(slot, clippingAttachment); continue; } } // If not any renderable attachment. clipper.ClipEnd(slot); continue; } } float tintBlackAlpha = 1.0f; if (pmaVertexColors) { color.a = (byte)(skeletonA * slot.a * c.a * 255); color.r = (byte)(skeletonR * slot.r * c.r * color.a); color.g = (byte)(skeletonG * slot.g * c.g * color.a); color.b = (byte)(skeletonB * slot.b * c.b * color.a); if (slot.data.blendMode == BlendMode.Additive) { if (canvasGroupTintBlack) tintBlackAlpha = 0; else color.a = 0; } } else { color.a = (byte)(skeletonA * slot.a * c.a * 255); color.r = (byte)(skeletonR * slot.r * c.r * 255); color.g = (byte)(skeletonG * slot.g * c.g * 255); color.b = (byte)(skeletonB * slot.b * c.b * 255); } if (useClipping && clipper.IsClipping) { clipper.ClipTriangles(workingVerts, attachmentVertexCount << 1, attachmentTriangleIndices, attachmentIndexCount, uvs); workingVerts = clipper.clippedVertices.Items; attachmentVertexCount = clipper.clippedVertices.Count >> 1; attachmentTriangleIndices = clipper.clippedTriangles.Items; attachmentIndexCount = clipper.clippedTriangles.Count; uvs = clipper.clippedUVs.Items; } // Actually add slot/attachment data into buffers. if (attachmentVertexCount != 0 && attachmentIndexCount != 0) { if (tintBlack) { float r2 = slot.r2; float g2 = slot.g2; float b2 = slot.b2; if (pmaVertexColors) { float alpha = skeletonA * slot.a * c.a; r2 *= alpha; g2 *= alpha; b2 *= alpha; } AddAttachmentTintBlack(r2, g2, b2, tintBlackAlpha, attachmentVertexCount); } //AddAttachment(workingVerts, uvs, color, attachmentTriangleIndices, attachmentVertexCount, attachmentIndexCount, ref meshBoundsMin, ref meshBoundsMax, z); int ovc = vertexBuffer.Count; // Add data to vertex buffers { int newVertexCount = ovc + attachmentVertexCount; int oldArraySize = vertexBuffer.Items.Length; if (newVertexCount > oldArraySize) { int newArraySize = (int)(oldArraySize * 1.3f); if (newArraySize < newVertexCount) newArraySize = newVertexCount; Array.Resize(ref vertexBuffer.Items, newArraySize); Array.Resize(ref uvBuffer.Items, newArraySize); Array.Resize(ref colorBuffer.Items, newArraySize); } vertexBuffer.Count = uvBuffer.Count = colorBuffer.Count = newVertexCount; } var vbi = vertexBuffer.Items; var ubi = uvBuffer.Items; var cbi = colorBuffer.Items; if (ovc == 0) { for (int i = 0; i < attachmentVertexCount; i++) { int vi = ovc + i; int i2 = i << 1; // i * 2 float x = workingVerts[i2]; float y = workingVerts[i2 + 1]; vbi[vi].x = x; vbi[vi].y = y; vbi[vi].z = z; ubi[vi].x = uvs[i2]; ubi[vi].y = uvs[i2 + 1]; cbi[vi] = color; // Calculate bounds. if (x < meshBoundsMin.x) meshBoundsMin.x = x; if (x > meshBoundsMax.x) meshBoundsMax.x = x; if (y < meshBoundsMin.y) meshBoundsMin.y = y; if (y > meshBoundsMax.y) meshBoundsMax.y = y; } } else { for (int i = 0; i < attachmentVertexCount; i++) { int vi = ovc + i; int i2 = i << 1; // i * 2 float x = workingVerts[i2]; float y = workingVerts[i2 + 1]; vbi[vi].x = x; vbi[vi].y = y; vbi[vi].z = z; ubi[vi].x = uvs[i2]; ubi[vi].y = uvs[i2 + 1]; cbi[vi] = color; // Calculate bounds. if (x < meshBoundsMin.x) meshBoundsMin.x = x; else if (x > meshBoundsMax.x) meshBoundsMax.x = x; if (y < meshBoundsMin.y) meshBoundsMin.y = y; else if (y > meshBoundsMax.y) meshBoundsMax.y = y; } } // Add data to triangle buffer if (updateTriangles) { int oldTriangleCount = submesh.Count; { //submesh.Resize(oldTriangleCount + attachmentIndexCount); int newTriangleCount = oldTriangleCount + attachmentIndexCount; if (newTriangleCount > submesh.Items.Length) Array.Resize(ref submesh.Items, newTriangleCount); submesh.Count = newTriangleCount; } var submeshItems = submesh.Items; for (int i = 0; i < attachmentIndexCount; i++) submeshItems[oldTriangleCount + i] = attachmentTriangleIndices[i] + ovc; } } clipper.ClipEnd(slot); } clipper.ClipEnd(); this.meshBoundsMin = meshBoundsMin; this.meshBoundsMax = meshBoundsMax; meshBoundsThickness = instruction.endSlot * zSpacing; // Trim or zero submesh triangles. var currentSubmeshItems = submesh.Items; for (int i = submesh.Count, n = currentSubmeshItems.Length; i < n; i++) currentSubmeshItems[i] = 0; submeshIndex++; // Next AddSubmesh will use a new submeshIndex value. } public void BuildMesh (SkeletonRendererInstruction instruction, bool updateTriangles) { var wsii = instruction.submeshInstructions.Items; for (int i = 0, n = instruction.submeshInstructions.Count; i < n; i++) this.AddSubmesh(wsii[i], updateTriangles); } // Use this faster method when no clipping is involved. public void BuildMeshWithArrays (SkeletonRendererInstruction instruction, bool updateTriangles) { var settings = this.settings; bool canvasGroupTintBlack = settings.tintBlack && settings.canvasGroupTintBlack; int totalVertexCount = instruction.rawVertexCount; // Add data to vertex buffers { if (totalVertexCount > vertexBuffer.Items.Length) { // Manual ExposedList.Resize() Array.Resize(ref vertexBuffer.Items, totalVertexCount); Array.Resize(ref uvBuffer.Items, totalVertexCount); Array.Resize(ref colorBuffer.Items, totalVertexCount); } vertexBuffer.Count = uvBuffer.Count = colorBuffer.Count = totalVertexCount; } // Populate Verts Color32 color = default(Color32); int vertexIndex = 0; var tempVerts = this.tempVerts; Vector2 bmin = this.meshBoundsMin; Vector2 bmax = this.meshBoundsMax; var vbi = vertexBuffer.Items; var ubi = uvBuffer.Items; var cbi = colorBuffer.Items; int lastSlotIndex = 0; // drawOrder[endSlot] is excluded for (int si = 0, n = instruction.submeshInstructions.Count; si < n; si++) { var submesh = instruction.submeshInstructions.Items[si]; var skeleton = submesh.skeleton; var drawOrderItems = skeleton.drawOrder.Items; float a = skeleton.a, r = skeleton.r, g = skeleton.g, b = skeleton.b; int endSlot = submesh.endSlot; int startSlot = submesh.startSlot; lastSlotIndex = endSlot; if (settings.tintBlack) { Vector2 rg, b2; int vi = vertexIndex; b2.y = 1f; { if (uv2 == null) { uv2 = new ExposedList(); uv3 = new ExposedList(); } if (totalVertexCount > uv2.Items.Length) { // Manual ExposedList.Resize() Array.Resize(ref uv2.Items, totalVertexCount); Array.Resize(ref uv3.Items, totalVertexCount); } uv2.Count = uv3.Count = totalVertexCount; } var uv2i = uv2.Items; var uv3i = uv3.Items; for (int slotIndex = startSlot; slotIndex < endSlot; slotIndex++) { var slot = drawOrderItems[slotIndex]; if (!slot.bone.active) continue; var attachment = slot.attachment; rg.x = slot.r2; //r rg.y = slot.g2; //g b2.x = slot.b2; //b b2.y = 1.0f; var regionAttachment = attachment as RegionAttachment; if (regionAttachment != null) { if (settings.pmaVertexColors) { float alpha = a * slot.a * regionAttachment.a; rg.x *= alpha; rg.y *= alpha; b2.x *= alpha; b2.y = slot.data.blendMode == BlendMode.Additive ? 0 : alpha; } uv2i[vi] = rg; uv2i[vi + 1] = rg; uv2i[vi + 2] = rg; uv2i[vi + 3] = rg; uv3i[vi] = b2; uv3i[vi + 1] = b2; uv3i[vi + 2] = b2; uv3i[vi + 3] = b2; vi += 4; } else { //} if (settings.renderMeshes) { var meshAttachment = attachment as MeshAttachment; if (meshAttachment != null) { if (settings.pmaVertexColors) { float alpha = a * slot.a * meshAttachment.a; rg.x *= alpha; rg.y *= alpha; b2.x *= alpha; b2.y = slot.data.blendMode == BlendMode.Additive ? 0 : alpha; } int meshVertexCount = meshAttachment.worldVerticesLength; for (int iii = 0; iii < meshVertexCount; iii += 2) { uv2i[vi] = rg; uv3i[vi] = b2; vi++; } } } } } for (int slotIndex = startSlot; slotIndex < endSlot; slotIndex++) { var slot = drawOrderItems[slotIndex]; if (!slot.bone.active) continue; var attachment = slot.attachment; float z = slotIndex * settings.zSpacing; var regionAttachment = attachment as RegionAttachment; if (regionAttachment != null) { regionAttachment.ComputeWorldVertices(slot.bone, tempVerts, 0); float x1 = tempVerts[RegionAttachment.BLX], y1 = tempVerts[RegionAttachment.BLY]; float x2 = tempVerts[RegionAttachment.ULX], y2 = tempVerts[RegionAttachment.ULY]; float x3 = tempVerts[RegionAttachment.URX], y3 = tempVerts[RegionAttachment.URY]; float x4 = tempVerts[RegionAttachment.BRX], y4 = tempVerts[RegionAttachment.BRY]; vbi[vertexIndex].x = x1; vbi[vertexIndex].y = y1; vbi[vertexIndex].z = z; vbi[vertexIndex + 1].x = x4; vbi[vertexIndex + 1].y = y4; vbi[vertexIndex + 1].z = z; vbi[vertexIndex + 2].x = x2; vbi[vertexIndex + 2].y = y2; vbi[vertexIndex + 2].z = z; vbi[vertexIndex + 3].x = x3; vbi[vertexIndex + 3].y = y3; vbi[vertexIndex + 3].z = z; if (settings.pmaVertexColors) { color.a = (byte)(a * slot.a * regionAttachment.a * 255); color.r = (byte)(r * slot.r * regionAttachment.r * color.a); color.g = (byte)(g * slot.g * regionAttachment.g * color.a); color.b = (byte)(b * slot.b * regionAttachment.b * color.a); if (slot.data.blendMode == BlendMode.Additive && !canvasGroupTintBlack) color.a = 0; } else { color.a = (byte)(a * slot.a * regionAttachment.a * 255); color.r = (byte)(r * slot.r * regionAttachment.r * 255); color.g = (byte)(g * slot.g * regionAttachment.g * 255); color.b = (byte)(b * slot.b * regionAttachment.b * 255); } cbi[vertexIndex] = color; cbi[vertexIndex + 1] = color; cbi[vertexIndex + 2] = color; cbi[vertexIndex + 3] = color; float[] regionUVs = regionAttachment.uvs; ubi[vertexIndex].x = regionUVs[RegionAttachment.BLX]; ubi[vertexIndex].y = regionUVs[RegionAttachment.BLY]; ubi[vertexIndex + 1].x = regionUVs[RegionAttachment.BRX]; ubi[vertexIndex + 1].y = regionUVs[RegionAttachment.BRY]; ubi[vertexIndex + 2].x = regionUVs[RegionAttachment.ULX]; ubi[vertexIndex + 2].y = regionUVs[RegionAttachment.ULY]; ubi[vertexIndex + 3].x = regionUVs[RegionAttachment.URX]; ubi[vertexIndex + 3].y = regionUVs[RegionAttachment.URY]; if (x1 < bmin.x) bmin.x = x1; // Potential first attachment bounds initialization. Initial min should not block initial max. Same for Y below. if (x1 > bmax.x) bmax.x = x1; if (x2 < bmin.x) bmin.x = x2; else if (x2 > bmax.x) bmax.x = x2; if (x3 < bmin.x) bmin.x = x3; else if (x3 > bmax.x) bmax.x = x3; if (x4 < bmin.x) bmin.x = x4; else if (x4 > bmax.x) bmax.x = x4; if (y1 < bmin.y) bmin.y = y1; if (y1 > bmax.y) bmax.y = y1; if (y2 < bmin.y) bmin.y = y2; else if (y2 > bmax.y) bmax.y = y2; if (y3 < bmin.y) bmin.y = y3; else if (y3 > bmax.y) bmax.y = y3; if (y4 < bmin.y) bmin.y = y4; else if (y4 > bmax.y) bmax.y = y4; vertexIndex += 4; } else { //if (settings.renderMeshes) { var meshAttachment = attachment as MeshAttachment; if (meshAttachment != null) { int meshVertexCount = meshAttachment.worldVerticesLength; if (tempVerts.Length < meshVertexCount) this.tempVerts = tempVerts = new float[meshVertexCount]; meshAttachment.ComputeWorldVertices(slot, tempVerts); if (settings.pmaVertexColors) { color.a = (byte)(a * slot.a * meshAttachment.a * 255); color.r = (byte)(r * slot.r * meshAttachment.r * color.a); color.g = (byte)(g * slot.g * meshAttachment.g * color.a); color.b = (byte)(b * slot.b * meshAttachment.b * color.a); if (slot.data.blendMode == BlendMode.Additive && !canvasGroupTintBlack) color.a = 0; } else { color.a = (byte)(a * slot.a * meshAttachment.a * 255); color.r = (byte)(r * slot.r * meshAttachment.r * 255); color.g = (byte)(g * slot.g * meshAttachment.g * 255); color.b = (byte)(b * slot.b * meshAttachment.b * 255); } float[] attachmentUVs = meshAttachment.uvs; // Potential first attachment bounds initialization. See conditions in RegionAttachment logic. if (vertexIndex == 0) { // Initial min should not block initial max. // vi == vertexIndex does not always mean the bounds are fresh. It could be a submesh. Do not nuke old values by omitting the check. // Should know that this is the first attachment in the submesh. slotIndex == startSlot could be an empty slot. float fx = tempVerts[0], fy = tempVerts[1]; if (fx < bmin.x) bmin.x = fx; if (fx > bmax.x) bmax.x = fx; if (fy < bmin.y) bmin.y = fy; if (fy > bmax.y) bmax.y = fy; } for (int iii = 0; iii < meshVertexCount; iii += 2) { float x = tempVerts[iii], y = tempVerts[iii + 1]; vbi[vertexIndex].x = x; vbi[vertexIndex].y = y; vbi[vertexIndex].z = z; cbi[vertexIndex] = color; ubi[vertexIndex].x = attachmentUVs[iii]; ubi[vertexIndex].y = attachmentUVs[iii + 1]; if (x < bmin.x) bmin.x = x; else if (x > bmax.x) bmax.x = x; if (y < bmin.y) bmin.y = y; else if (y > bmax.y) bmax.y = y; vertexIndex++; } } } } } this.meshBoundsMin = bmin; this.meshBoundsMax = bmax; this.meshBoundsThickness = lastSlotIndex * settings.zSpacing; int submeshInstructionCount = instruction.submeshInstructions.Count; submeshes.Count = submeshInstructionCount; // Add triangles if (updateTriangles) { // Match submesh buffers count with submeshInstruction count. if (this.submeshes.Items.Length < submeshInstructionCount) { this.submeshes.Resize(submeshInstructionCount); for (int i = 0, n = submeshInstructionCount; i < n; i++) { var submeshBuffer = this.submeshes.Items[i]; if (submeshBuffer == null) this.submeshes.Items[i] = new ExposedList(); else submeshBuffer.Clear(false); } } var submeshInstructionsItems = instruction.submeshInstructions.Items; // This relies on the resize above. // Fill the buffers. int attachmentFirstVertex = 0; for (int smbi = 0; smbi < submeshInstructionCount; smbi++) { var submeshInstruction = submeshInstructionsItems[smbi]; var currentSubmeshBuffer = this.submeshes.Items[smbi]; { //submesh.Resize(submesh.rawTriangleCount); int newTriangleCount = submeshInstruction.rawTriangleCount; if (newTriangleCount > currentSubmeshBuffer.Items.Length) Array.Resize(ref currentSubmeshBuffer.Items, newTriangleCount); else if (newTriangleCount < currentSubmeshBuffer.Items.Length) { // Zero the extra. var sbi = currentSubmeshBuffer.Items; for (int ei = newTriangleCount, nn = sbi.Length; ei < nn; ei++) sbi[ei] = 0; } currentSubmeshBuffer.Count = newTriangleCount; } var tris = currentSubmeshBuffer.Items; int triangleIndex = 0; var skeleton = submeshInstruction.skeleton; var drawOrderItems = skeleton.drawOrder.Items; for (int slotIndex = submeshInstruction.startSlot, endSlot = submeshInstruction.endSlot; slotIndex < endSlot; slotIndex++) { var slot = drawOrderItems[slotIndex]; if (!slot.bone.active) continue; var attachment = drawOrderItems[slotIndex].attachment; if (attachment is RegionAttachment) { tris[triangleIndex] = attachmentFirstVertex; tris[triangleIndex + 1] = attachmentFirstVertex + 2; tris[triangleIndex + 2] = attachmentFirstVertex + 1; tris[triangleIndex + 3] = attachmentFirstVertex + 2; tris[triangleIndex + 4] = attachmentFirstVertex + 3; tris[triangleIndex + 5] = attachmentFirstVertex + 1; triangleIndex += 6; attachmentFirstVertex += 4; continue; } var meshAttachment = attachment as MeshAttachment; if (meshAttachment != null) { int[] attachmentTriangles = meshAttachment.triangles; for (int ii = 0, nn = attachmentTriangles.Length; ii < nn; ii++, triangleIndex++) tris[triangleIndex] = attachmentFirstVertex + attachmentTriangles[ii]; attachmentFirstVertex += meshAttachment.worldVerticesLength >> 1; // length/2; } } } } } public void ScaleVertexData (float scale) { var vbi = vertexBuffer.Items; for (int i = 0, n = vertexBuffer.Count; i < n; i++) { vbi[i] *= scale; // vbi[i].x *= scale; vbi[i].y *= scale; } meshBoundsMin *= scale; meshBoundsMax *= scale; meshBoundsThickness *= scale; } void AddAttachmentTintBlack (float r2, float g2, float b2, float a, int vertexCount) { var rg = new Vector2(r2, g2); var bo = new Vector2(b2, a); int ovc = vertexBuffer.Count; int newVertexCount = ovc + vertexCount; { if (uv2 == null) { uv2 = new ExposedList(); uv3 = new ExposedList(); } if (newVertexCount > uv2.Items.Length) { // Manual ExposedList.Resize() Array.Resize(ref uv2.Items, newVertexCount); Array.Resize(ref uv3.Items, newVertexCount); } uv2.Count = uv3.Count = newVertexCount; } var uv2i = uv2.Items; var uv3i = uv3.Items; for (int i = 0; i < vertexCount; i++) { uv2i[ovc + i] = rg; uv3i[ovc + i] = bo; } } #endregion #region Step 3 : Transfer vertex and triangle data to UnityEngine.Mesh public void FillVertexData (Mesh mesh) { var vbi = vertexBuffer.Items; var ubi = uvBuffer.Items; var cbi = colorBuffer.Items; int vbiLength = vbi.Length; // Zero the extra. { int listCount = vertexBuffer.Count; var vector3zero = Vector3.zero; for (int i = listCount; i < vbiLength; i++) vbi[i] = vector3zero; } // Set the vertex buffer. { mesh.vertices = vbi; mesh.uv = ubi; mesh.colors32 = cbi; if (float.IsInfinity(meshBoundsMin.x)) { // meshBoundsMin.x == BoundsMinDefault // == doesn't work on float Infinity constants. mesh.bounds = new Bounds(); } else { //mesh.bounds = ArraysMeshGenerator.ToBounds(meshBoundsMin, meshBoundsMax); float halfWidth = (meshBoundsMax.x - meshBoundsMin.x) * 0.5f; float halfHeight = (meshBoundsMax.y - meshBoundsMin.y) * 0.5f; mesh.bounds = new Bounds { center = new Vector3(meshBoundsMin.x + halfWidth, meshBoundsMin.y + halfHeight), extents = new Vector3(halfWidth, halfHeight, meshBoundsThickness * 0.5f) }; } } { if (settings.addNormals) { int oldLength = 0; if (normals == null) normals = new Vector3[vbiLength]; else oldLength = normals.Length; if (oldLength != vbiLength) { Array.Resize(ref this.normals, vbiLength); var localNormals = this.normals; for (int i = oldLength; i < vbiLength; i++) localNormals[i] = Vector3.back; } mesh.normals = this.normals; } if (settings.tintBlack) { if (uv2 != null) { // Sometimes, the vertex buffer becomes smaller. We need to trim the size of the tint black buffers to match. if (vbiLength != uv2.Items.Length) { Array.Resize(ref uv2.Items, vbiLength); Array.Resize(ref uv3.Items, vbiLength); uv2.Count = uv3.Count = vbiLength; } mesh.uv2 = this.uv2.Items; mesh.uv3 = this.uv3.Items; } } } } public void FillLateVertexData (Mesh mesh) { if (settings.calculateTangents) { int vertexCount = this.vertexBuffer.Count; var sbi = submeshes.Items; int submeshCount = submeshes.Count; var vbi = vertexBuffer.Items; var ubi = uvBuffer.Items; MeshGenerator.SolveTangents2DEnsureSize(ref this.tangents, ref this.tempTanBuffer, vertexCount, vbi.Length); for (int i = 0; i < submeshCount; i++) { var submesh = sbi[i].Items; int triangleCount = sbi[i].Count; MeshGenerator.SolveTangents2DTriangles(this.tempTanBuffer, submesh, triangleCount, vbi, ubi, vertexCount); } MeshGenerator.SolveTangents2DBuffer(this.tangents, this.tempTanBuffer, vertexCount); mesh.tangents = this.tangents; } } public void FillTriangles (Mesh mesh) { int submeshCount = submeshes.Count; var submeshesItems = submeshes.Items; mesh.subMeshCount = submeshCount; for (int i = 0; i < submeshCount; i++) mesh.SetTriangles(submeshesItems[i].Items, i, false); } #endregion public void EnsureVertexCapacity (int minimumVertexCount, bool inlcudeTintBlack = false, bool includeTangents = false, bool includeNormals = false) { if (minimumVertexCount > vertexBuffer.Items.Length) { Array.Resize(ref vertexBuffer.Items, minimumVertexCount); Array.Resize(ref uvBuffer.Items, minimumVertexCount); Array.Resize(ref colorBuffer.Items, minimumVertexCount); if (inlcudeTintBlack) { if (uv2 == null) { uv2 = new ExposedList(minimumVertexCount); uv3 = new ExposedList(minimumVertexCount); } uv2.Resize(minimumVertexCount); uv3.Resize(minimumVertexCount); } if (includeNormals) { if (normals == null) normals = new Vector3[minimumVertexCount]; else Array.Resize(ref normals, minimumVertexCount); } if (includeTangents) { if (tangents == null) tangents = new Vector4[minimumVertexCount]; else Array.Resize(ref tangents, minimumVertexCount); } } } /// Trims internal buffers to reduce the resulting mesh data stream size. public void TrimExcess () { vertexBuffer.TrimExcess(); uvBuffer.TrimExcess(); colorBuffer.TrimExcess(); if (uv2 != null) uv2.TrimExcess(); if (uv3 != null) uv3.TrimExcess(); int vbiLength = vertexBuffer.Items.Length; if (normals != null) Array.Resize(ref normals, vbiLength); if (tangents != null) Array.Resize(ref tangents, vbiLength); } #region TangentSolver2D // Thanks to contributions from forum user ToddRivers /// Step 1 of solving tangents. Ensure you have buffers of the correct size. /// Eventual Vector4[] tangent buffer to assign to Mesh.tangents. /// Temporary Vector2 buffer for calculating directions. /// Number of vertices that require tangents (or the size of the vertex array) internal static void SolveTangents2DEnsureSize (ref Vector4[] tangentBuffer, ref Vector2[] tempTanBuffer, int vertexCount, int vertexBufferLength) { if (tangentBuffer == null || tangentBuffer.Length != vertexBufferLength) tangentBuffer = new Vector4[vertexBufferLength]; if (tempTanBuffer == null || tempTanBuffer.Length < vertexCount * 2) tempTanBuffer = new Vector2[vertexCount * 2]; // two arrays in one. } /// Step 2 of solving tangents. Fills (part of) a temporary tangent-solution buffer based on the vertices and uvs defined by a submesh's triangle buffer. Only needs to be called once for single-submesh meshes. /// A temporary Vector3[] for calculating tangents. /// The mesh's current vertex position buffer. /// The mesh's current triangles buffer. /// The mesh's current uvs buffer. /// Number of vertices that require tangents (or the size of the vertex array) /// The number of triangle indexes in the triangle array to be used. internal static void SolveTangents2DTriangles (Vector2[] tempTanBuffer, int[] triangles, int triangleCount, Vector3[] vertices, Vector2[] uvs, int vertexCount) { Vector2 sdir; Vector2 tdir; for (int t = 0; t < triangleCount; t += 3) { int i1 = triangles[t + 0]; int i2 = triangles[t + 1]; int i3 = triangles[t + 2]; Vector3 v1 = vertices[i1]; Vector3 v2 = vertices[i2]; Vector3 v3 = vertices[i3]; Vector2 w1 = uvs[i1]; Vector2 w2 = uvs[i2]; Vector2 w3 = uvs[i3]; float x1 = v2.x - v1.x; float x2 = v3.x - v1.x; float y1 = v2.y - v1.y; float y2 = v3.y - v1.y; float s1 = w2.x - w1.x; float s2 = w3.x - w1.x; float t1 = w2.y - w1.y; float t2 = w3.y - w1.y; float div = s1 * t2 - s2 * t1; float r = (div == 0f) ? 0f : 1f / div; sdir.x = (t2 * x1 - t1 * x2) * r; sdir.y = (t2 * y1 - t1 * y2) * r; tempTanBuffer[i1] = tempTanBuffer[i2] = tempTanBuffer[i3] = sdir; tdir.x = (s1 * x2 - s2 * x1) * r; tdir.y = (s1 * y2 - s2 * y1) * r; tempTanBuffer[vertexCount + i1] = tempTanBuffer[vertexCount + i2] = tempTanBuffer[vertexCount + i3] = tdir; } } /// Step 3 of solving tangents. Fills a Vector4[] tangents array according to values calculated in step 2. /// A Vector4[] that will eventually be used to set Mesh.tangents /// A temporary Vector3[] for calculating tangents. /// Number of vertices that require tangents (or the size of the vertex array) internal static void SolveTangents2DBuffer (Vector4[] tangents, Vector2[] tempTanBuffer, int vertexCount) { Vector4 tangent; tangent.z = 0; for (int i = 0; i < vertexCount; ++i) { Vector2 t = tempTanBuffer[i]; // t.Normalize() (aggressively inlined). Even better if offloaded to GPU via vertex shader. float magnitude = Mathf.Sqrt(t.x * t.x + t.y * t.y); if (magnitude > 1E-05) { float reciprocalMagnitude = 1f/magnitude; t.x *= reciprocalMagnitude; t.y *= reciprocalMagnitude; } Vector2 t2 = tempTanBuffer[vertexCount + i]; tangent.x = t.x; tangent.y = t.y; //tangent.z = 0; tangent.w = (t.y * t2.x > t.x * t2.y) ? 1 : -1; // 2D direction calculation. Used for binormals. tangents[i] = tangent; } } #endregion #region AttachmentRendering static List AttachmentVerts = new List(); static List AttachmentUVs = new List(); static List AttachmentColors32 = new List(); static List AttachmentIndices = new List(); /// Fills mesh vertex data to render a RegionAttachment. public static void FillMeshLocal (Mesh mesh, RegionAttachment regionAttachment) { if (mesh == null) return; if (regionAttachment == null) return; AttachmentVerts.Clear(); var offsets = regionAttachment.Offset; AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.BLX], offsets[RegionAttachment.BLY])); AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.ULX], offsets[RegionAttachment.ULY])); AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.URX], offsets[RegionAttachment.URY])); AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.BRX], offsets[RegionAttachment.BRY])); AttachmentUVs.Clear(); var uvs = regionAttachment.UVs; AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.ULX], uvs[RegionAttachment.ULY])); AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.URX], uvs[RegionAttachment.URY])); AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.BRX], uvs[RegionAttachment.BRY])); AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.BLX], uvs[RegionAttachment.BLY])); AttachmentColors32.Clear(); Color32 c = (Color32)(new Color(regionAttachment.r, regionAttachment.g, regionAttachment.b, regionAttachment.a)); for (int i = 0; i < 4; i++) AttachmentColors32.Add(c); AttachmentIndices.Clear(); AttachmentIndices.AddRange(new[] { 0, 2, 1, 0, 3, 2 }); mesh.Clear(); mesh.name = regionAttachment.Name; mesh.SetVertices(AttachmentVerts); mesh.SetUVs(0, AttachmentUVs); mesh.SetColors(AttachmentColors32); mesh.SetTriangles(AttachmentIndices, 0); mesh.RecalculateBounds(); AttachmentVerts.Clear(); AttachmentUVs.Clear(); AttachmentColors32.Clear(); AttachmentIndices.Clear(); } public static void FillMeshLocal (Mesh mesh, MeshAttachment meshAttachment, SkeletonData skeletonData) { if (mesh == null) return; if (meshAttachment == null) return; int vertexCount = meshAttachment.WorldVerticesLength / 2; AttachmentVerts.Clear(); if (meshAttachment.IsWeighted()) { int count = meshAttachment.WorldVerticesLength; int[] meshAttachmentBones = meshAttachment.bones; int v = 0; float[] vertices = meshAttachment.vertices; for (int w = 0, b = 0; w < count; w += 2) { float wx = 0, wy = 0; int n = meshAttachmentBones[v++]; n += v; for (; v < n; v++, b += 3) { BoneMatrix bm = BoneMatrix.CalculateSetupWorld(skeletonData.bones.Items[meshAttachmentBones[v]]); float vx = vertices[b], vy = vertices[b + 1], weight = vertices[b + 2]; wx += (vx * bm.a + vy * bm.b + bm.x) * weight; wy += (vx * bm.c + vy * bm.d + bm.y) * weight; } AttachmentVerts.Add(new Vector3(wx, wy)); } } else { var localVerts = meshAttachment.Vertices; Vector3 pos = default(Vector3); for (int i = 0; i < vertexCount; i++) { int ii = i * 2; pos.x = localVerts[ii]; pos.y = localVerts[ii + 1]; AttachmentVerts.Add(pos); } } var uvs = meshAttachment.uvs; Vector2 uv = default(Vector2); Color32 c = (Color32)(new Color(meshAttachment.r, meshAttachment.g, meshAttachment.b, meshAttachment.a)); AttachmentUVs.Clear(); AttachmentColors32.Clear(); for (int i = 0; i < vertexCount; i++) { int ii = i * 2; uv.x = uvs[ii]; uv.y = uvs[ii + 1]; AttachmentUVs.Add(uv); AttachmentColors32.Add(c); } AttachmentIndices.Clear(); AttachmentIndices.AddRange(meshAttachment.triangles); mesh.Clear(); mesh.name = meshAttachment.Name; mesh.SetVertices(AttachmentVerts); mesh.SetUVs(0, AttachmentUVs); mesh.SetColors(AttachmentColors32); mesh.SetTriangles(AttachmentIndices, 0); mesh.RecalculateBounds(); AttachmentVerts.Clear(); AttachmentUVs.Clear(); AttachmentColors32.Clear(); AttachmentIndices.Clear(); } #endregion } }