#ifndef SKELETON_LIT_COMMON_INCLUDED #define SKELETON_LIT_COMMON_INCLUDED #include "UnityCG.cginc" // ES2.0/WebGL/3DS can not do loops with non-constant-expression iteration counts :( #if defined(SHADER_API_GLES) #define LIGHT_LOOP_LIMIT 8 #elif defined(SHADER_API_N3DS) #define LIGHT_LOOP_LIMIT 4 #else #define LIGHT_LOOP_LIMIT unity_VertexLightParams.x #endif //////////////////////////////////////// // Alpha Clipping // #if defined(_ALPHA_CLIP) uniform fixed _Cutoff; #define ALPHA_CLIP(pixel, color) clip((pixel.a * color.a) - _Cutoff); #else #define ALPHA_CLIP(pixel, color) #endif half3 computeLighting (int idx, half3 dirToLight, half3 eyeNormal, half4 diffuseColor, half atten) { half NdotL = max(dot(eyeNormal, dirToLight), 0.0); // diffuse half3 color = NdotL * diffuseColor.rgb * unity_LightColor[idx].rgb; return color * atten; } half3 computeOneLight (int idx, float3 eyePosition, half3 eyeNormal, half4 diffuseColor) { float3 dirToLight = unity_LightPosition[idx].xyz; half att = 1.0; #if defined(POINT) || defined(SPOT) dirToLight -= eyePosition * unity_LightPosition[idx].w; // distance attenuation float distSqr = dot(dirToLight, dirToLight); att /= (1.0 + unity_LightAtten[idx].z * distSqr); if (unity_LightPosition[idx].w != 0 && distSqr > unity_LightAtten[idx].w) att = 0.0; // set to 0 if outside of range distSqr = max(distSqr, 0.000001); // don't produce NaNs if some vertex position overlaps with the light dirToLight *= rsqrt(distSqr); #if defined(SPOT) // spot angle attenuation half rho = max(dot(dirToLight, unity_SpotDirection[idx].xyz), 0.0); half spotAtt = (rho - unity_LightAtten[idx].x) * unity_LightAtten[idx].y; att *= saturate(spotAtt); #endif #endif att *= 0.5; // passed in light colors are 2x brighter than what used to be in FFP return min (computeLighting (idx, dirToLight, eyeNormal, diffuseColor, att), 1.0); } int4 unity_VertexLightParams; // x: light count, y: zero, z: one (y/z needed by d3d9 vs loop instruction) struct appdata { float3 pos : POSITION; float3 normal : NORMAL; half4 color : COLOR; float2 uv0 : TEXCOORD0; UNITY_VERTEX_INPUT_INSTANCE_ID }; struct VertexOutput { fixed4 color : COLOR0; float2 uv0 : TEXCOORD0; float4 pos : SV_POSITION; UNITY_VERTEX_OUTPUT_STEREO }; VertexOutput vert (appdata v) { VertexOutput o; UNITY_SETUP_INSTANCE_ID(v); UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o); half4 color = v.color; float3 eyePos = UnityObjectToViewPos(float4(v.pos, 1)).xyz; //mul(UNITY_MATRIX_MV, float4(v.pos,1)).xyz; half3 fixedNormal = half3(0,0,-1); half3 eyeNormal = normalize(mul((float3x3)UNITY_MATRIX_IT_MV, fixedNormal)); #ifdef _DOUBLE_SIDED_LIGHTING // unfortunately we have to compute the sign here in the vertex shader // instead of using VFACE in fragment shader stage. half faceSign = sign(eyeNormal.z); eyeNormal *= faceSign; #endif // Lights half3 lcolor = half4(0,0,0,1).rgb + color.rgb * glstate_lightmodel_ambient.rgb; for (int il = 0; il < LIGHT_LOOP_LIMIT; ++il) { lcolor += computeOneLight(il, eyePos, eyeNormal, color); } color.rgb = lcolor.rgb; o.color = saturate(color); o.uv0 = v.uv0; o.pos = UnityObjectToClipPos(v.pos); return o; } sampler2D _MainTex; fixed4 frag (VertexOutput i) : SV_Target { fixed4 tex = tex2D(_MainTex, i.uv0); ALPHA_CLIP(tex, i.color); fixed4 col; #if defined(_STRAIGHT_ALPHA_INPUT) col.rgb = tex * i.color * tex.a; #else col.rgb = tex * i.color; #endif col *= 2; col.a = tex.a * i.color.a; return col; } #endif