2024-11-21 09:35:48 +08:00

1555 lines
59 KiB
C#

/******************************************************************************
* Spine Runtimes License Agreement
* Last updated July 28, 2023. Replaces all prior versions.
*
* Copyright (c) 2013-2023, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software or
* otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE
* SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#if UNITY_2019_3_OR_NEWER
#define MESH_SET_TRIANGLES_PROVIDES_LENGTH_PARAM
#endif
#if !UNITY_2020_1_OR_NEWER
// Note: on Unity 2019.4 or older, e.g. operator* was not inlined via AggressiveInlining and at least with some
// configurations will lead to unnecessary overhead.
#define MANUALLY_INLINE_VECTOR_OPERATORS
#endif
// Optimization option: Allows faster BuildMeshWithArrays call and avoids calling SetTriangles at the cost of
// checking for mesh differences (vertex counts, member-wise attachment list compare) every frame.
#define SPINE_TRIANGLECHECK
//#define SPINE_DEBUG
// New optimization option to avoid rendering fully transparent attachments at slot alpha 0.
// Comment out this line to revert to previous behaviour.
// You may only need this option disabled when utilizing a custom shader which
// uses vertex color alpha for purposes other than transparency.
//
// Important Note: When disabling this define, also disable the one in SkeletonRenderInstruction.cs
#define SLOT_ALPHA_DISABLES_ATTACHMENT
// Note: This define below enables a bugfix where when Linear color space is used and `PMA vertex colors` enabled,
// additive slots add a too dark (too transparent) color value.
//
// If you want the old incorrect behaviour (darker additive slots) or are not using Linear but Gamma color space,
// you can comment-out the define below to deactivate the fix or just to skip unnecessary instructions.
//
// Details:
// Alpha-premultiplication of vertex colors happens in gamma-space, and vertexColor.a is set to 0 at additive slots.
// In the shader, gamma space vertex color has to be transformed from gamma space to linear space.
// Unfortunately vertexColorGamma.rgb=(rgb*a) while the desired color in linear space would be
// vertexColorLinear.rgb = GammaToLinear(rgb)*a = GammaToLinear(vertexColorGamma.rgb/a),
// but unfortunately 'a' is unknown as vertexColorGamma.a = 0 at additive slots.
// Thus the define below enables a fix where 'a' is transformed via
// a=LinearToGamma(a), so that the subsequent GammaToLinear() operation is canceled out on 'a'.
#define LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
using System;
using System.Collections.Generic;
using UnityEngine;
namespace Spine.Unity {
public delegate void MeshGeneratorDelegate (MeshGeneratorBuffers buffers);
public struct MeshGeneratorBuffers {
/// <summary>The vertex count that will actually be used for the mesh. The Lengths of the buffer arrays may be larger than this number.</summary>
public int vertexCount;
/// <summary> Vertex positions. To be used for UnityEngine.Mesh.vertices.</summary>
public Vector3[] vertexBuffer;
/// <summary> Vertex texture coordinates (UVs). To be used for UnityEngine.Mesh.uv.</summary>
public Vector2[] uvBuffer;
/// <summary> Vertex colors. To be used for UnityEngine.Mesh.colors32.</summary>
public Color32[] colorBuffer;
/// <summary> Optional vertex texture coordinates (UVs), second channel. To be used for UnityEngine.Mesh.uv2.
/// Using this accessor automatically allocates and resizes the buffer accordingly.</summary>
public Vector2[] uv2Buffer { get { return meshGenerator.UV2; } }
/// <summary> Optional vertex texture coordinates (UVs), third channel. To be used for UnityEngine.Mesh.uv3.
/// Using this accessor automatically allocates and resizes the buffer accordingly.</summary>
public Vector2[] uv3Buffer { get { return meshGenerator.UV3; } }
/// <summary> The Spine rendering component's MeshGenerator. </summary>
public MeshGenerator meshGenerator;
}
/// <summary>Holds several methods to prepare and generate a UnityEngine mesh based on a skeleton. Contains buffers needed to perform the operation, and serializes settings for mesh generation.</summary>
[System.Serializable]
public class MeshGenerator {
public Settings settings = Settings.Default;
[System.Serializable]
public struct Settings {
public bool useClipping;
[Range(-0.1f, 0f)] public float zSpacing;
public bool tintBlack;
[UnityEngine.Serialization.FormerlySerializedAs("canvasGroupTintBlack")]
[Tooltip("Enable when using SkeletonGraphic under a CanvasGroup. " +
"When enabled, PMA Vertex Color alpha value is stored at uv2.g instead of color.a to capture " +
"CanvasGroup modifying color.a. Also helps to detect correct parameter setting combinations.")]
public bool canvasGroupCompatible;
public bool pmaVertexColors;
public bool addNormals;
public bool calculateTangents;
public bool immutableTriangles;
static public Settings Default {
get {
return new Settings {
pmaVertexColors = true,
zSpacing = 0f,
useClipping = true,
tintBlack = false,
calculateTangents = false,
//renderMeshes = true,
addNormals = false,
immutableTriangles = false
};
}
}
}
const float BoundsMinDefault = float.PositiveInfinity;
const float BoundsMaxDefault = float.NegativeInfinity;
[NonSerialized] protected readonly ExposedList<Vector3> vertexBuffer = new ExposedList<Vector3>(4);
[NonSerialized] protected readonly ExposedList<Vector2> uvBuffer = new ExposedList<Vector2>(4);
[NonSerialized] protected readonly ExposedList<Color32> colorBuffer = new ExposedList<Color32>(4);
[NonSerialized] protected readonly ExposedList<ExposedList<int>> submeshes = new ExposedList<ExposedList<int>> { new ExposedList<int>(6) }; // start with 1 submesh.
[NonSerialized] Vector2 meshBoundsMin, meshBoundsMax;
[NonSerialized] float meshBoundsThickness;
[NonSerialized] int submeshIndex = 0;
[NonSerialized] SkeletonClipping clipper = new SkeletonClipping();
[NonSerialized] float[] tempVerts = new float[8];
[NonSerialized] int[] regionTriangles = { 0, 1, 2, 2, 3, 0 };
#region Optional Buffers
// These optional buffers are lazy-instantiated when the feature is used.
[NonSerialized] Vector3[] normals;
[NonSerialized] Vector4[] tangents;
[NonSerialized] Vector2[] tempTanBuffer;
[NonSerialized] ExposedList<Vector2> uv2;
[NonSerialized] ExposedList<Vector2> uv3;
/// <summary> Optional vertex texture coordinates (UVs), second channel. To be used for UnityEngine.Mesh.uv2.
/// Using this accessor automatically allocates and resizes the buffer accordingly.</summary>
public Vector2[] UV2 { get { PrepareOptionalUVBuffer(ref uv2, vertexBuffer.Count); return uv2.Items; } }
/// <summary> Optional vertex texture coordinates (UVs), third channel. To be used for UnityEngine.Mesh.uv3.
/// Using this accessor automatically allocates and resizes the buffer accordingly.</summary>
public Vector2[] UV3 { get { PrepareOptionalUVBuffer(ref uv3, vertexBuffer.Count); return uv3.Items; } }
#endregion
public int VertexCount { get { return vertexBuffer.Count; } }
public int SubmeshIndexCount (int submeshIndex) { return submeshes.Items[submeshIndex].Count; }
/// <summary>A set of mesh arrays whose values are modifiable by the user. Modify these values before they are passed to the UnityEngine mesh object in order to see the effect.</summary>
public MeshGeneratorBuffers Buffers {
get {
return new MeshGeneratorBuffers {
vertexCount = this.VertexCount,
vertexBuffer = this.vertexBuffer.Items,
uvBuffer = this.uvBuffer.Items,
colorBuffer = this.colorBuffer.Items,
meshGenerator = this
};
}
}
/// <summary>Returns the <see cref="SkeletonClipping"/> used by this mesh generator for use with e.g.
/// <see cref="Skeleton.GetBounds(out float, out float, out float, out float, ref float[], SkeletonClipping)"/>
/// </summary>
public SkeletonClipping SkeletonClipping { get { return clipper; } }
public MeshGenerator () {
submeshes.TrimExcess();
}
#region Step 1 : Generate Instructions
/// <summary>
/// A specialized variant of <see cref="GenerateSkeletonRendererInstruction"/>.
/// Generates renderer instructions using a single submesh, using only a single material and texture.
/// </summary>
/// <param name="instructionOutput">The resulting instructions.</param>
/// <param name="skeleton">The skeleton to generate renderer instructions for.</param>
/// <param name="material">Material to be set at the renderer instruction. When null, the last attachment
/// in the draw order list is assigned as the instruction's material.</param>
public static void GenerateSingleSubmeshInstruction (SkeletonRendererInstruction instructionOutput, Skeleton skeleton, Material material) {
ExposedList<Slot> drawOrder = skeleton.DrawOrder;
int drawOrderCount = drawOrder.Count;
// Clear last state of attachments and submeshes
instructionOutput.Clear(); // submeshInstructions.Clear(); attachments.Clear();
ExposedList<SubmeshInstruction> workingSubmeshInstructions = instructionOutput.submeshInstructions;
#if SPINE_TRIANGLECHECK
instructionOutput.attachments.Resize(drawOrderCount);
Attachment[] workingAttachmentsItems = instructionOutput.attachments.Items;
int totalRawVertexCount = 0;
#endif
SubmeshInstruction current = new SubmeshInstruction {
skeleton = skeleton,
preActiveClippingSlotSource = -1,
startSlot = 0,
#if SPINE_TRIANGLECHECK
rawFirstVertexIndex = 0,
#endif
material = material,
forceSeparate = false,
endSlot = drawOrderCount
};
#if SPINE_TRIANGLECHECK
object rendererObject = null;
bool skeletonHasClipping = false;
Slot[] drawOrderItems = drawOrder.Items;
for (int i = 0; i < drawOrderCount; i++) {
Slot slot = drawOrderItems[i];
if (!slot.Bone.Active
#if SLOT_ALPHA_DISABLES_ATTACHMENT
|| slot.A == 0f
#endif
) {
workingAttachmentsItems[i] = null;
continue;
}
if (slot.Data.BlendMode == BlendMode.Additive) current.hasPMAAdditiveSlot = true;
Attachment attachment = slot.Attachment;
workingAttachmentsItems[i] = attachment;
int attachmentTriangleCount;
int attachmentVertexCount;
RegionAttachment regionAttachment = attachment as RegionAttachment;
if (regionAttachment != null) {
if (regionAttachment.Sequence != null) regionAttachment.Sequence.Apply(slot, regionAttachment);
rendererObject = regionAttachment.Region;
attachmentVertexCount = 4;
attachmentTriangleCount = 6;
} else {
MeshAttachment meshAttachment = attachment as MeshAttachment;
if (meshAttachment != null) {
if (meshAttachment.Sequence != null) meshAttachment.Sequence.Apply(slot, meshAttachment);
rendererObject = meshAttachment.Region;
attachmentVertexCount = meshAttachment.WorldVerticesLength >> 1;
attachmentTriangleCount = meshAttachment.Triangles.Length;
} else {
ClippingAttachment clippingAttachment = attachment as ClippingAttachment;
if (clippingAttachment != null) {
current.hasClipping = true;
skeletonHasClipping = true;
}
attachmentVertexCount = 0;
attachmentTriangleCount = 0;
}
}
current.rawTriangleCount += attachmentTriangleCount;
current.rawVertexCount += attachmentVertexCount;
totalRawVertexCount += attachmentVertexCount;
}
#if !SPINE_TK2D
if (material == null && rendererObject != null)
current.material = (Material)((AtlasRegion)rendererObject).page.rendererObject;
#else
if (material == null && rendererObject != null)
current.material = (rendererObject is Material) ? (Material)rendererObject : (Material)((AtlasRegion)rendererObject).page.rendererObject;
#endif
instructionOutput.hasActiveClipping = skeletonHasClipping;
instructionOutput.rawVertexCount = totalRawVertexCount;
#endif
#if SPINE_TRIANGLECHECK
bool hasAnyVertices = totalRawVertexCount > 0;
#else
bool hasAnyVertices = true;
#endif
if (hasAnyVertices) {
workingSubmeshInstructions.Resize(1);
workingSubmeshInstructions.Items[0] = current;
} else {
workingSubmeshInstructions.Resize(0);
}
}
public static bool RequiresMultipleSubmeshesByDrawOrder (Skeleton skeleton) {
#if SPINE_TK2D
return false;
#endif
ExposedList<Slot> drawOrder = skeleton.DrawOrder;
int drawOrderCount = drawOrder.Count;
Slot[] drawOrderItems = drawOrder.Items;
Material lastRendererMaterial = null;
for (int i = 0; i < drawOrderCount; i++) {
Slot slot = drawOrderItems[i];
if (!slot.Bone.Active
#if SLOT_ALPHA_DISABLES_ATTACHMENT
|| slot.A == 0f
#endif
) continue;
Attachment attachment = slot.Attachment;
IHasTextureRegion rendererAttachment = attachment as IHasTextureRegion;
if (rendererAttachment != null) {
if (rendererAttachment.Sequence != null) rendererAttachment.Sequence.Apply(slot, rendererAttachment);
AtlasRegion atlasRegion = (AtlasRegion)rendererAttachment.Region;
Material material = (Material)atlasRegion.page.rendererObject;
if (lastRendererMaterial != material) {
if (lastRendererMaterial != null)
return true;
lastRendererMaterial = material;
}
}
}
return false;
}
public static void GenerateSkeletonRendererInstruction (SkeletonRendererInstruction instructionOutput, Skeleton skeleton, Dictionary<Slot, Material> customSlotMaterials, List<Slot> separatorSlots, bool generateMeshOverride, bool immutableTriangles = false) {
// if (skeleton == null) throw new ArgumentNullException("skeleton");
// if (instructionOutput == null) throw new ArgumentNullException("instructionOutput");
ExposedList<Slot> drawOrder = skeleton.DrawOrder;
int drawOrderCount = drawOrder.Count;
// Clear last state of attachments and submeshes
instructionOutput.Clear(); // submeshInstructions.Clear(); attachments.Clear();
ExposedList<SubmeshInstruction> workingSubmeshInstructions = instructionOutput.submeshInstructions;
#if SPINE_TRIANGLECHECK
instructionOutput.attachments.Resize(drawOrderCount);
Attachment[] workingAttachmentsItems = instructionOutput.attachments.Items;
int totalRawVertexCount = 0;
bool skeletonHasClipping = false;
#endif
SubmeshInstruction current = new SubmeshInstruction {
skeleton = skeleton,
preActiveClippingSlotSource = -1
};
#if !SPINE_TK2D
bool isCustomSlotMaterialsPopulated = customSlotMaterials != null && customSlotMaterials.Count > 0;
#endif
int separatorCount = separatorSlots == null ? 0 : separatorSlots.Count;
bool hasSeparators = separatorCount > 0;
int clippingAttachmentSource = -1;
int lastPreActiveClipping = -1; // The index of the last slot that had an active ClippingAttachment.
SlotData clippingEndSlot = null;
int submeshIndex = 0;
Slot[] drawOrderItems = drawOrder.Items;
for (int i = 0; i < drawOrderCount; i++) {
Slot slot = drawOrderItems[i];
if (!slot.Bone.Active
#if SLOT_ALPHA_DISABLES_ATTACHMENT
|| (slot.A == 0f && slot.Data != clippingEndSlot)
#endif
) {
#if SPINE_TRIANGLECHECK
workingAttachmentsItems[i] = null;
#endif
continue;
}
if (slot.Data.BlendMode == BlendMode.Additive) current.hasPMAAdditiveSlot = true;
Attachment attachment = slot.Attachment;
#if SPINE_TRIANGLECHECK
workingAttachmentsItems[i] = attachment;
int attachmentVertexCount = 0, attachmentTriangleCount = 0;
#endif
object region = null;
bool noRender = false; // Using this allows empty slots as separators, and keeps separated parts more stable despite slots being reordered
RegionAttachment regionAttachment = attachment as RegionAttachment;
if (regionAttachment != null) {
if (regionAttachment.Sequence != null) regionAttachment.Sequence.Apply(slot, regionAttachment);
region = regionAttachment.Region;
#if SPINE_TRIANGLECHECK
attachmentVertexCount = 4;
attachmentTriangleCount = 6;
#endif
} else {
MeshAttachment meshAttachment = attachment as MeshAttachment;
if (meshAttachment != null) {
if (meshAttachment.Sequence != null) meshAttachment.Sequence.Apply(slot, meshAttachment);
region = meshAttachment.Region;
#if SPINE_TRIANGLECHECK
attachmentVertexCount = meshAttachment.WorldVerticesLength >> 1;
attachmentTriangleCount = meshAttachment.Triangles.Length;
#endif
} else {
#if SPINE_TRIANGLECHECK
ClippingAttachment clippingAttachment = attachment as ClippingAttachment;
if (clippingAttachment != null) {
clippingEndSlot = clippingAttachment.EndSlot;
clippingAttachmentSource = i;
current.hasClipping = true;
skeletonHasClipping = true;
}
#endif
noRender = true;
}
}
// Create a new SubmeshInstruction when material changes. (or when forced to separate by a submeshSeparator)
// Slot with a separator/new material will become the starting slot of the next new instruction.
if (hasSeparators) { //current.forceSeparate = hasSeparators && separatorSlots.Contains(slot);
current.forceSeparate = false;
for (int s = 0; s < separatorCount; s++) {
if (Slot.ReferenceEquals(slot, separatorSlots[s])) {
current.forceSeparate = true;
break;
}
}
}
if (noRender) {
if (current.forceSeparate && generateMeshOverride) { // && current.rawVertexCount > 0) {
{ // Add
current.endSlot = i;
current.preActiveClippingSlotSource = lastPreActiveClipping;
workingSubmeshInstructions.Resize(submeshIndex + 1);
workingSubmeshInstructions.Items[submeshIndex] = current;
submeshIndex++;
}
current.startSlot = i;
lastPreActiveClipping = clippingAttachmentSource;
#if SPINE_TRIANGLECHECK
current.rawTriangleCount = 0;
current.rawVertexCount = 0;
current.rawFirstVertexIndex = totalRawVertexCount;
current.hasClipping = clippingAttachmentSource >= 0;
#endif
}
} else {
#if !SPINE_TK2D
Material material;
if (isCustomSlotMaterialsPopulated) {
if (!customSlotMaterials.TryGetValue(slot, out material))
material = (Material)((AtlasRegion)region).page.rendererObject;
} else {
material = (Material)((AtlasRegion)region).page.rendererObject;
}
#else
// An AtlasRegion in plain spine-unity, spine-TK2D hooks into TK2D's system. eventual source of Material object.
Material material = (region is Material) ? (Material)region : (Material)((AtlasRegion)region).page.rendererObject;
#endif
#if !SPINE_TRIANGLECHECK
if (current.forceSeparate || !System.Object.ReferenceEquals(current.material, material)) { // Material changed. Add the previous submesh.
#else
if (current.forceSeparate || (current.rawVertexCount > 0 && !System.Object.ReferenceEquals(current.material, material))) { // Material changed. Add the previous submesh.
#endif
{ // Add
current.endSlot = i;
current.preActiveClippingSlotSource = lastPreActiveClipping;
workingSubmeshInstructions.Resize(submeshIndex + 1);
workingSubmeshInstructions.Items[submeshIndex] = current;
submeshIndex++;
}
current.startSlot = i;
lastPreActiveClipping = clippingAttachmentSource;
#if SPINE_TRIANGLECHECK
current.rawTriangleCount = 0;
current.rawVertexCount = 0;
current.rawFirstVertexIndex = totalRawVertexCount;
current.hasClipping = clippingAttachmentSource >= 0;
#endif
}
// Update state for the next Attachment.
current.material = material;
#if SPINE_TRIANGLECHECK
current.rawTriangleCount += attachmentTriangleCount;
current.rawVertexCount += attachmentVertexCount;
current.rawFirstVertexIndex = totalRawVertexCount;
totalRawVertexCount += attachmentVertexCount;
#endif
}
if (clippingEndSlot != null && slot.Data == clippingEndSlot && i != clippingAttachmentSource) {
clippingEndSlot = null;
clippingAttachmentSource = -1;
}
}
if (current.rawVertexCount > 0) {
{ // Add last or only submesh.
current.endSlot = drawOrderCount;
current.preActiveClippingSlotSource = lastPreActiveClipping;
current.forceSeparate = false;
workingSubmeshInstructions.Resize(submeshIndex + 1);
workingSubmeshInstructions.Items[submeshIndex] = current;
//submeshIndex++;
}
}
#if SPINE_TRIANGLECHECK
instructionOutput.hasActiveClipping = skeletonHasClipping;
instructionOutput.rawVertexCount = totalRawVertexCount;
#endif
instructionOutput.immutableTriangles = immutableTriangles;
}
public static void TryReplaceMaterials (ExposedList<SubmeshInstruction> workingSubmeshInstructions, Dictionary<Material, Material> customMaterialOverride) {
// Material overrides are done here so they can be applied per submesh instead of per slot
// but they will still be passed through the GenerateMeshOverride delegate,
// and will still go through the normal material match check step in STEP 3.
SubmeshInstruction[] wsii = workingSubmeshInstructions.Items;
for (int i = 0; i < workingSubmeshInstructions.Count; i++) {
Material material = wsii[i].material;
if (material == null) continue;
Material overrideMaterial;
if (customMaterialOverride.TryGetValue(material, out overrideMaterial))
wsii[i].material = overrideMaterial;
}
}
#endregion
#region Step 2 : Populate vertex data and triangle index buffers.
public void Begin () {
vertexBuffer.Clear(false);
colorBuffer.Clear(false);
uvBuffer.Clear(false);
clipper.ClipEnd();
{
meshBoundsMin.x = BoundsMinDefault;
meshBoundsMin.y = BoundsMinDefault;
meshBoundsMax.x = BoundsMaxDefault;
meshBoundsMax.y = BoundsMaxDefault;
meshBoundsThickness = 0f;
}
submeshIndex = 0;
submeshes.Count = 1;
//submeshes.Items[0].Clear(false);
}
public void AddSubmesh (SubmeshInstruction instruction, bool updateTriangles = true) {
Settings settings = this.settings;
int newSubmeshCount = submeshIndex + 1;
if (submeshes.Items.Length < newSubmeshCount)
submeshes.Resize(newSubmeshCount);
submeshes.Count = newSubmeshCount;
ExposedList<int> submesh = submeshes.Items[submeshIndex];
if (submesh == null)
submeshes.Items[submeshIndex] = submesh = new ExposedList<int>();
submesh.Clear(false);
Skeleton skeleton = instruction.skeleton;
Slot[] drawOrderItems = skeleton.DrawOrder.Items;
Color32 color = default(Color32);
float skeletonA = skeleton.A, skeletonR = skeleton.R, skeletonG = skeleton.G, skeletonB = skeleton.B;
Vector2 meshBoundsMin = this.meshBoundsMin, meshBoundsMax = this.meshBoundsMax;
// Settings
float zSpacing = settings.zSpacing;
bool pmaVertexColors = settings.pmaVertexColors;
bool tintBlack = settings.tintBlack;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
bool linearColorSpace = QualitySettings.activeColorSpace == ColorSpace.Linear;
#endif
#if SPINE_TRIANGLECHECK
bool useClipping = settings.useClipping && instruction.hasClipping;
#else
bool useClipping = settings.useClipping;
#endif
bool canvasGroupTintBlack = settings.tintBlack && settings.canvasGroupCompatible;
if (useClipping) {
if (instruction.preActiveClippingSlotSource >= 0) {
Slot slot = drawOrderItems[instruction.preActiveClippingSlotSource];
clipper.ClipStart(slot, slot.Attachment as ClippingAttachment);
}
}
for (int slotIndex = instruction.startSlot; slotIndex < instruction.endSlot; slotIndex++) {
Slot slot = drawOrderItems[slotIndex];
if (!slot.Bone.Active) {
clipper.ClipEnd(slot);
continue;
}
Attachment attachment = slot.Attachment;
float z = zSpacing * slotIndex;
float[] workingVerts = this.tempVerts;
float[] uvs;
int[] attachmentTriangleIndices;
int attachmentVertexCount;
int attachmentIndexCount;
Color c = default(Color);
// Identify and prepare values.
RegionAttachment region = attachment as RegionAttachment;
if (region != null) {
region.ComputeWorldVertices(slot, workingVerts, 0);
uvs = region.UVs;
attachmentTriangleIndices = regionTriangles;
c.r = region.R; c.g = region.G; c.b = region.B; c.a = region.A;
attachmentVertexCount = 4;
attachmentIndexCount = 6;
} else {
MeshAttachment mesh = attachment as MeshAttachment;
if (mesh != null) {
int meshVerticesLength = mesh.WorldVerticesLength;
if (workingVerts.Length < meshVerticesLength) {
workingVerts = new float[meshVerticesLength];
this.tempVerts = workingVerts;
}
mesh.ComputeWorldVertices(slot, 0, meshVerticesLength, workingVerts, 0); //meshAttachment.ComputeWorldVertices(slot, tempVerts);
uvs = mesh.UVs;
attachmentTriangleIndices = mesh.Triangles;
c.r = mesh.R; c.g = mesh.G; c.b = mesh.B; c.a = mesh.A;
attachmentVertexCount = meshVerticesLength >> 1; // meshVertexCount / 2;
attachmentIndexCount = mesh.Triangles.Length;
} else {
if (useClipping) {
ClippingAttachment clippingAttachment = attachment as ClippingAttachment;
if (clippingAttachment != null) {
clipper.ClipStart(slot, clippingAttachment);
continue;
}
}
// If not any renderable attachment.
clipper.ClipEnd(slot);
continue;
}
}
float tintBlackAlpha = 1.0f;
if (pmaVertexColors) {
float alpha = skeletonA * slot.A * c.a;
bool isAdditiveSlot = slot.Data.BlendMode == BlendMode.Additive;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
if (linearColorSpace && isAdditiveSlot)
alpha = Mathf.LinearToGammaSpace(alpha); // compensate GammaToLinear performed in shader
#endif
color.a = (byte)(alpha * 255);
color.r = (byte)(skeletonR * slot.R * c.r * color.a);
color.g = (byte)(skeletonG * slot.G * c.g * color.a);
color.b = (byte)(skeletonB * slot.B * c.b * color.a);
if (canvasGroupTintBlack) {
tintBlackAlpha = isAdditiveSlot ? 0 : alpha;
color.a = 255;
} else {
if (isAdditiveSlot)
color.a = 0;
}
} else {
color.a = (byte)(skeletonA * slot.A * c.a * 255);
color.r = (byte)(skeletonR * slot.R * c.r * 255);
color.g = (byte)(skeletonG * slot.G * c.g * 255);
color.b = (byte)(skeletonB * slot.B * c.b * 255);
}
if (useClipping && clipper.IsClipping) {
clipper.ClipTriangles(workingVerts, attachmentTriangleIndices, attachmentIndexCount, uvs);
workingVerts = clipper.ClippedVertices.Items;
attachmentVertexCount = clipper.ClippedVertices.Count >> 1;
attachmentTriangleIndices = clipper.ClippedTriangles.Items;
attachmentIndexCount = clipper.ClippedTriangles.Count;
uvs = clipper.ClippedUVs.Items;
}
// Actually add slot/attachment data into buffers.
if (attachmentVertexCount != 0 && attachmentIndexCount != 0) {
if (tintBlack) {
float r2 = slot.R2;
float g2 = slot.G2;
float b2 = slot.B2;
if (pmaVertexColors) {
float alpha = skeletonA * slot.A * c.a;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
bool isAdditiveSlot = slot.Data.BlendMode == BlendMode.Additive;
if (linearColorSpace && isAdditiveSlot)
alpha = Mathf.LinearToGammaSpace(alpha); // compensate GammaToLinear performed in shader
#endif
r2 *= alpha;
g2 *= alpha;
b2 *= alpha;
}
AddAttachmentTintBlack(r2, g2, b2, tintBlackAlpha, attachmentVertexCount);
}
//AddAttachment(workingVerts, uvs, color, attachmentTriangleIndices, attachmentVertexCount, attachmentIndexCount, ref meshBoundsMin, ref meshBoundsMax, z);
int ovc = vertexBuffer.Count;
// Add data to vertex buffers
{
int newVertexCount = ovc + attachmentVertexCount;
int oldArraySize = vertexBuffer.Items.Length;
if (newVertexCount > oldArraySize) {
int newArraySize = (int)(oldArraySize * 1.3f);
if (newArraySize < newVertexCount) newArraySize = newVertexCount;
Array.Resize(ref vertexBuffer.Items, newArraySize);
Array.Resize(ref uvBuffer.Items, newArraySize);
Array.Resize(ref colorBuffer.Items, newArraySize);
}
vertexBuffer.Count = uvBuffer.Count = colorBuffer.Count = newVertexCount;
}
Vector3[] vbi = vertexBuffer.Items;
Vector2[] ubi = uvBuffer.Items;
Color32[] cbi = colorBuffer.Items;
if (ovc == 0) {
for (int i = 0; i < attachmentVertexCount; i++) {
int vi = ovc + i;
int i2 = i << 1; // i * 2
float x = workingVerts[i2];
float y = workingVerts[i2 + 1];
vbi[vi].x = x;
vbi[vi].y = y;
vbi[vi].z = z;
ubi[vi].x = uvs[i2];
ubi[vi].y = uvs[i2 + 1];
cbi[vi] = color;
// Calculate bounds.
if (x < meshBoundsMin.x) meshBoundsMin.x = x;
if (x > meshBoundsMax.x) meshBoundsMax.x = x;
if (y < meshBoundsMin.y) meshBoundsMin.y = y;
if (y > meshBoundsMax.y) meshBoundsMax.y = y;
}
} else {
for (int i = 0; i < attachmentVertexCount; i++) {
int vi = ovc + i;
int i2 = i << 1; // i * 2
float x = workingVerts[i2];
float y = workingVerts[i2 + 1];
vbi[vi].x = x;
vbi[vi].y = y;
vbi[vi].z = z;
ubi[vi].x = uvs[i2];
ubi[vi].y = uvs[i2 + 1];
cbi[vi] = color;
// Calculate bounds.
if (x < meshBoundsMin.x) meshBoundsMin.x = x;
else if (x > meshBoundsMax.x) meshBoundsMax.x = x;
if (y < meshBoundsMin.y) meshBoundsMin.y = y;
else if (y > meshBoundsMax.y) meshBoundsMax.y = y;
}
}
// Add data to triangle buffer
if (updateTriangles) {
int oldTriangleCount = submesh.Count;
{ //submesh.Resize(oldTriangleCount + attachmentIndexCount);
int newTriangleCount = oldTriangleCount + attachmentIndexCount;
if (newTriangleCount > submesh.Items.Length) Array.Resize(ref submesh.Items, newTriangleCount);
submesh.Count = newTriangleCount;
}
int[] submeshItems = submesh.Items;
for (int i = 0; i < attachmentIndexCount; i++)
submeshItems[oldTriangleCount + i] = attachmentTriangleIndices[i] + ovc;
}
}
clipper.ClipEnd(slot);
}
clipper.ClipEnd();
this.meshBoundsMin = meshBoundsMin;
this.meshBoundsMax = meshBoundsMax;
meshBoundsThickness = instruction.endSlot * zSpacing;
// Trim or zero submesh triangles.
int[] currentSubmeshItems = submesh.Items;
for (int i = submesh.Count, n = currentSubmeshItems.Length; i < n; i++)
currentSubmeshItems[i] = 0;
submeshIndex++; // Next AddSubmesh will use a new submeshIndex value.
}
public void BuildMesh (SkeletonRendererInstruction instruction, bool updateTriangles) {
SubmeshInstruction[] wsii = instruction.submeshInstructions.Items;
for (int i = 0, n = instruction.submeshInstructions.Count; i < n; i++)
this.AddSubmesh(wsii[i], updateTriangles);
}
// Use this faster method when no clipping is involved.
public void BuildMeshWithArrays (SkeletonRendererInstruction instruction, bool updateTriangles) {
#if !SPINE_TRIANGLECHECK
return;
#else
Settings settings = this.settings;
bool canvasGroupTintBlack = settings.tintBlack && settings.canvasGroupCompatible;
int totalVertexCount = instruction.rawVertexCount;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
bool linearColorSpace = QualitySettings.activeColorSpace == ColorSpace.Linear;
#endif
// Add data to vertex buffers
{
if (totalVertexCount > vertexBuffer.Items.Length) { // Manual ExposedList.Resize()
Array.Resize(ref vertexBuffer.Items, totalVertexCount);
Array.Resize(ref uvBuffer.Items, totalVertexCount);
Array.Resize(ref colorBuffer.Items, totalVertexCount);
}
vertexBuffer.Count = uvBuffer.Count = colorBuffer.Count = totalVertexCount;
}
// Populate Verts
Color32 color = default(Color32);
int vertexIndex = 0;
float[] tempVerts = this.tempVerts;
Vector2 bmin = this.meshBoundsMin;
Vector2 bmax = this.meshBoundsMax;
Vector3[] vbi = vertexBuffer.Items;
Vector2[] ubi = uvBuffer.Items;
Color32[] cbi = colorBuffer.Items;
int lastSlotIndex = 0;
// drawOrder[endSlot] is excluded
for (int si = 0, n = instruction.submeshInstructions.Count; si < n; si++) {
SubmeshInstruction submesh = instruction.submeshInstructions.Items[si];
Skeleton skeleton = submesh.skeleton;
Slot[] drawOrderItems = skeleton.DrawOrder.Items;
float a = skeleton.A, r = skeleton.R, g = skeleton.G, b = skeleton.B;
int endSlot = submesh.endSlot;
int startSlot = submesh.startSlot;
lastSlotIndex = endSlot;
if (settings.tintBlack) {
Vector2 rg, b2;
int vi = vertexIndex;
b2.y = 1f;
PrepareOptionalUVBuffer(ref uv2, totalVertexCount);
PrepareOptionalUVBuffer(ref uv3, totalVertexCount);
Vector2[] uv2i = uv2.Items;
Vector2[] uv3i = uv3.Items;
for (int slotIndex = startSlot; slotIndex < endSlot; slotIndex++) {
Slot slot = drawOrderItems[slotIndex];
if (!slot.Bone.Active
#if SLOT_ALPHA_DISABLES_ATTACHMENT
|| slot.A == 0f
#endif
) continue;
Attachment attachment = slot.Attachment;
rg.x = slot.R2; //r
rg.y = slot.G2; //g
b2.x = slot.B2; //b
b2.y = 1.0f;
RegionAttachment regionAttachment = attachment as RegionAttachment;
if (regionAttachment != null) {
if (settings.pmaVertexColors) {
float alpha = a * slot.A * regionAttachment.A;
bool isAdditiveSlot = slot.Data.BlendMode == BlendMode.Additive;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
if (linearColorSpace && isAdditiveSlot)
alpha = Mathf.LinearToGammaSpace(alpha); // compensate GammaToLinear performed in shader
#endif
rg.x *= alpha;
rg.y *= alpha;
b2.x *= alpha;
b2.y = isAdditiveSlot ? 0 : alpha;
}
uv2i[vi] = rg; uv2i[vi + 1] = rg; uv2i[vi + 2] = rg; uv2i[vi + 3] = rg;
uv3i[vi] = b2; uv3i[vi + 1] = b2; uv3i[vi + 2] = b2; uv3i[vi + 3] = b2;
vi += 4;
} else { //} if (settings.renderMeshes) {
MeshAttachment meshAttachment = attachment as MeshAttachment;
if (meshAttachment != null) {
if (settings.pmaVertexColors) {
float alpha = a * slot.A * meshAttachment.A;
bool isAdditiveSlot = slot.Data.BlendMode == BlendMode.Additive;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
if (linearColorSpace && isAdditiveSlot)
alpha = Mathf.LinearToGammaSpace(alpha); // compensate GammaToLinear performed in shader
#endif
rg.x *= alpha;
rg.y *= alpha;
b2.x *= alpha;
b2.y = isAdditiveSlot ? 0 : alpha;
}
int verticesArrayLength = meshAttachment.WorldVerticesLength;
for (int iii = 0; iii < verticesArrayLength; iii += 2) {
uv2i[vi] = rg;
uv3i[vi] = b2;
vi++;
}
}
}
}
}
for (int slotIndex = startSlot; slotIndex < endSlot; slotIndex++) {
Slot slot = drawOrderItems[slotIndex];
if (!slot.Bone.Active
#if SLOT_ALPHA_DISABLES_ATTACHMENT
|| slot.A == 0f
#endif
) continue;
Attachment attachment = slot.Attachment;
float z = slotIndex * settings.zSpacing;
RegionAttachment regionAttachment = attachment as RegionAttachment;
if (regionAttachment != null) {
regionAttachment.ComputeWorldVertices(slot, tempVerts, 0);
float x1 = tempVerts[RegionAttachment.BLX], y1 = tempVerts[RegionAttachment.BLY];
float x2 = tempVerts[RegionAttachment.ULX], y2 = tempVerts[RegionAttachment.ULY];
float x3 = tempVerts[RegionAttachment.URX], y3 = tempVerts[RegionAttachment.URY];
float x4 = tempVerts[RegionAttachment.BRX], y4 = tempVerts[RegionAttachment.BRY];
vbi[vertexIndex].x = x1; vbi[vertexIndex].y = y1; vbi[vertexIndex].z = z;
vbi[vertexIndex + 1].x = x4; vbi[vertexIndex + 1].y = y4; vbi[vertexIndex + 1].z = z;
vbi[vertexIndex + 2].x = x2; vbi[vertexIndex + 2].y = y2; vbi[vertexIndex + 2].z = z;
vbi[vertexIndex + 3].x = x3; vbi[vertexIndex + 3].y = y3; vbi[vertexIndex + 3].z = z;
if (settings.pmaVertexColors) {
float alpha = a * slot.A * regionAttachment.A;
bool isAdditiveSlot = slot.Data.BlendMode == BlendMode.Additive;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
if (linearColorSpace && isAdditiveSlot)
alpha = Mathf.LinearToGammaSpace(alpha); // compensate GammaToLinear performed in shader
#endif
color.a = (byte)(alpha * 255);
color.r = (byte)(r * slot.R * regionAttachment.R * color.a);
color.g = (byte)(g * slot.G * regionAttachment.G * color.a);
color.b = (byte)(b * slot.B * regionAttachment.B * color.a);
if (canvasGroupTintBlack) color.a = 255;
else if (isAdditiveSlot) color.a = 0;
} else {
color.a = (byte)(a * slot.A * regionAttachment.A * 255);
color.r = (byte)(r * slot.R * regionAttachment.R * 255);
color.g = (byte)(g * slot.G * regionAttachment.G * 255);
color.b = (byte)(b * slot.B * regionAttachment.B * 255);
}
cbi[vertexIndex] = color; cbi[vertexIndex + 1] = color; cbi[vertexIndex + 2] = color; cbi[vertexIndex + 3] = color;
float[] regionUVs = regionAttachment.UVs;
ubi[vertexIndex].x = regionUVs[RegionAttachment.BLX]; ubi[vertexIndex].y = regionUVs[RegionAttachment.BLY];
ubi[vertexIndex + 1].x = regionUVs[RegionAttachment.BRX]; ubi[vertexIndex + 1].y = regionUVs[RegionAttachment.BRY];
ubi[vertexIndex + 2].x = regionUVs[RegionAttachment.ULX]; ubi[vertexIndex + 2].y = regionUVs[RegionAttachment.ULY];
ubi[vertexIndex + 3].x = regionUVs[RegionAttachment.URX]; ubi[vertexIndex + 3].y = regionUVs[RegionAttachment.URY];
if (x1 < bmin.x) bmin.x = x1; // Potential first attachment bounds initialization. Initial min should not block initial max. Same for Y below.
if (x1 > bmax.x) bmax.x = x1;
if (x2 < bmin.x) bmin.x = x2;
else if (x2 > bmax.x) bmax.x = x2;
if (x3 < bmin.x) bmin.x = x3;
else if (x3 > bmax.x) bmax.x = x3;
if (x4 < bmin.x) bmin.x = x4;
else if (x4 > bmax.x) bmax.x = x4;
if (y1 < bmin.y) bmin.y = y1;
if (y1 > bmax.y) bmax.y = y1;
if (y2 < bmin.y) bmin.y = y2;
else if (y2 > bmax.y) bmax.y = y2;
if (y3 < bmin.y) bmin.y = y3;
else if (y3 > bmax.y) bmax.y = y3;
if (y4 < bmin.y) bmin.y = y4;
else if (y4 > bmax.y) bmax.y = y4;
vertexIndex += 4;
} else { //if (settings.renderMeshes) {
MeshAttachment meshAttachment = attachment as MeshAttachment;
if (meshAttachment != null) {
int verticesArrayLength = meshAttachment.WorldVerticesLength;
if (tempVerts.Length < verticesArrayLength) this.tempVerts = tempVerts = new float[verticesArrayLength];
meshAttachment.ComputeWorldVertices(slot, tempVerts);
if (settings.pmaVertexColors) {
float alpha = a * slot.A * meshAttachment.A;
bool isAdditiveSlot = slot.Data.BlendMode == BlendMode.Additive;
#if LINEAR_COLOR_SPACE_FIX_ADDITIVE_ALPHA
if (linearColorSpace && isAdditiveSlot)
alpha = Mathf.LinearToGammaSpace(alpha); // compensate GammaToLinear performed in shader
#endif
color.a = (byte)(alpha * 255);
color.r = (byte)(r * slot.R * meshAttachment.R * color.a);
color.g = (byte)(g * slot.G * meshAttachment.G * color.a);
color.b = (byte)(b * slot.B * meshAttachment.B * color.a);
if (canvasGroupTintBlack) color.a = 255;
else if (isAdditiveSlot) color.a = 0;
} else {
color.a = (byte)(a * slot.A * meshAttachment.A * 255);
color.r = (byte)(r * slot.R * meshAttachment.R * 255);
color.g = (byte)(g * slot.G * meshAttachment.G * 255);
color.b = (byte)(b * slot.B * meshAttachment.B * 255);
}
float[] attachmentUVs = meshAttachment.UVs;
// Potential first attachment bounds initialization. See conditions in RegionAttachment logic.
if (vertexIndex == 0) {
// Initial min should not block initial max.
// vi == vertexIndex does not always mean the bounds are fresh. It could be a submesh. Do not nuke old values by omitting the check.
// Should know that this is the first attachment in the submesh. slotIndex == startSlot could be an empty slot.
float fx = tempVerts[0], fy = tempVerts[1];
if (fx < bmin.x) bmin.x = fx;
if (fx > bmax.x) bmax.x = fx;
if (fy < bmin.y) bmin.y = fy;
if (fy > bmax.y) bmax.y = fy;
}
for (int iii = 0; iii < verticesArrayLength; iii += 2) {
float x = tempVerts[iii], y = tempVerts[iii + 1];
vbi[vertexIndex].x = x; vbi[vertexIndex].y = y; vbi[vertexIndex].z = z;
cbi[vertexIndex] = color; ubi[vertexIndex].x = attachmentUVs[iii]; ubi[vertexIndex].y = attachmentUVs[iii + 1];
if (x < bmin.x) bmin.x = x;
else if (x > bmax.x) bmax.x = x;
if (y < bmin.y) bmin.y = y;
else if (y > bmax.y) bmax.y = y;
vertexIndex++;
}
}
}
}
}
this.meshBoundsMin = bmin;
this.meshBoundsMax = bmax;
this.meshBoundsThickness = lastSlotIndex * settings.zSpacing;
int submeshInstructionCount = instruction.submeshInstructions.Count;
submeshes.Count = submeshInstructionCount;
// Add triangles
if (updateTriangles) {
// Match submesh buffers count with submeshInstruction count.
if (this.submeshes.Items.Length < submeshInstructionCount) {
this.submeshes.Resize(submeshInstructionCount);
for (int i = 0, n = submeshInstructionCount; i < n; i++) {
ExposedList<int> submeshBuffer = this.submeshes.Items[i];
if (submeshBuffer == null)
this.submeshes.Items[i] = new ExposedList<int>();
else
submeshBuffer.Clear(false);
}
}
SubmeshInstruction[] submeshInstructionsItems = instruction.submeshInstructions.Items; // This relies on the resize above.
// Fill the buffers.
int attachmentFirstVertex = 0;
for (int smbi = 0; smbi < submeshInstructionCount; smbi++) {
SubmeshInstruction submeshInstruction = submeshInstructionsItems[smbi];
ExposedList<int> currentSubmeshBuffer = this.submeshes.Items[smbi];
{ //submesh.Resize(submesh.rawTriangleCount);
int newTriangleCount = submeshInstruction.rawTriangleCount;
if (newTriangleCount > currentSubmeshBuffer.Items.Length)
Array.Resize(ref currentSubmeshBuffer.Items, newTriangleCount);
else if (newTriangleCount < currentSubmeshBuffer.Items.Length) {
// Zero the extra.
int[] sbi = currentSubmeshBuffer.Items;
for (int ei = newTriangleCount, nn = sbi.Length; ei < nn; ei++)
sbi[ei] = 0;
}
currentSubmeshBuffer.Count = newTriangleCount;
}
int[] tris = currentSubmeshBuffer.Items;
int triangleIndex = 0;
Skeleton skeleton = submeshInstruction.skeleton;
Slot[] drawOrderItems = skeleton.DrawOrder.Items;
for (int slotIndex = submeshInstruction.startSlot, endSlot = submeshInstruction.endSlot; slotIndex < endSlot; slotIndex++) {
Slot slot = drawOrderItems[slotIndex];
if (!slot.Bone.Active
#if SLOT_ALPHA_DISABLES_ATTACHMENT
|| slot.A == 0f
#endif
) continue;
Attachment attachment = drawOrderItems[slotIndex].Attachment;
if (attachment is RegionAttachment) {
tris[triangleIndex] = attachmentFirstVertex;
tris[triangleIndex + 1] = attachmentFirstVertex + 2;
tris[triangleIndex + 2] = attachmentFirstVertex + 1;
tris[triangleIndex + 3] = attachmentFirstVertex + 2;
tris[triangleIndex + 4] = attachmentFirstVertex + 3;
tris[triangleIndex + 5] = attachmentFirstVertex + 1;
triangleIndex += 6;
attachmentFirstVertex += 4;
continue;
}
MeshAttachment meshAttachment = attachment as MeshAttachment;
if (meshAttachment != null) {
int[] attachmentTriangles = meshAttachment.Triangles;
for (int ii = 0, nn = attachmentTriangles.Length; ii < nn; ii++, triangleIndex++)
tris[triangleIndex] = attachmentFirstVertex + attachmentTriangles[ii];
attachmentFirstVertex += meshAttachment.WorldVerticesLength >> 1; // length/2;
}
}
}
}
#endif // SPINE_TRIANGLECHECK
}
public void ScaleVertexData (float scale) {
Vector3[] vbi = vertexBuffer.Items;
for (int i = 0, n = vertexBuffer.Count; i < n; i++) {
#if MANUALLY_INLINE_VECTOR_OPERATORS
vbi[i].x *= scale;
vbi[i].y *= scale;
vbi[i].z *= scale;
#else
vbi[i] *= scale;
#endif
}
meshBoundsMin *= scale;
meshBoundsMax *= scale;
meshBoundsThickness *= scale;
}
public void ScaleAndOffsetVertexData (float scale, Vector2 offset2D) {
Vector3 offset = new Vector3(offset2D.x, offset2D.y);
Vector3[] vbi = vertexBuffer.Items;
for (int i = 0, n = vertexBuffer.Count; i < n; i++) {
#if MANUALLY_INLINE_VECTOR_OPERATORS
vbi[i].x = vbi[i].x * scale + offset.x;
vbi[i].y = vbi[i].y * scale + offset.y;
vbi[i].z = vbi[i].z * scale + offset.z;
#else
vbi[i] = vbi[i] * scale + offset;
#endif
}
meshBoundsMin *= scale;
meshBoundsMax *= scale;
meshBoundsMin += offset2D;
meshBoundsMax += offset2D;
meshBoundsThickness *= scale;
}
public Bounds GetMeshBounds () {
if (float.IsInfinity(meshBoundsMin.x)) { // meshBoundsMin.x == BoundsMinDefault // == doesn't work on float Infinity constants.
return new Bounds();
} else {
//mesh.bounds = ArraysMeshGenerator.ToBounds(meshBoundsMin, meshBoundsMax);
float halfWidth = (meshBoundsMax.x - meshBoundsMin.x) * 0.5f;
float halfHeight = (meshBoundsMax.y - meshBoundsMin.y) * 0.5f;
return new Bounds {
center = new Vector3(meshBoundsMin.x + halfWidth, meshBoundsMin.y + halfHeight),
extents = new Vector3(halfWidth, halfHeight, meshBoundsThickness * 0.5f)
};
}
}
void AddAttachmentTintBlack (float r2, float g2, float b2, float a, int vertexCount) {
Vector2 rg = new Vector2(r2, g2);
Vector2 bo = new Vector2(b2, a);
int ovc = vertexBuffer.Count;
int newVertexCount = ovc + vertexCount;
PrepareOptionalUVBuffer(ref uv2, newVertexCount);
PrepareOptionalUVBuffer(ref uv3, newVertexCount);
Vector2[] uv2i = uv2.Items;
Vector2[] uv3i = uv3.Items;
for (int i = 0; i < vertexCount; i++) {
uv2i[ovc + i] = rg;
uv3i[ovc + i] = bo;
}
}
void PrepareOptionalUVBuffer (ref ExposedList<Vector2> uvBuffer, int vertexCount) {
if (uvBuffer == null) {
uvBuffer = new ExposedList<Vector2>();
}
if (vertexCount > uvBuffer.Items.Length) { // Manual ExposedList.Resize()
Array.Resize(ref uvBuffer.Items, vertexCount);
}
uvBuffer.Count = vertexCount;
}
void ResizeOptionalUVBuffer (ref ExposedList<Vector2> uvBuffer, int vertexCount) {
if (uvBuffer != null) {
if (vertexCount != uvBuffer.Items.Length) {
Array.Resize(ref uvBuffer.Items, vertexCount);
uvBuffer.Count = vertexCount;
}
}
}
#endregion
#region Step 3 : Transfer vertex and triangle data to UnityEngine.Mesh
public void FillVertexData (Mesh mesh) {
Vector3[] vbi = vertexBuffer.Items;
Vector2[] ubi = uvBuffer.Items;
Color32[] cbi = colorBuffer.Items;
int vbiLength = vbi.Length;
// Zero the extra.
{
int listCount = vertexBuffer.Count;
Vector3 vector3zero = Vector3.zero;
for (int i = listCount; i < vbiLength; i++)
vbi[i] = vector3zero;
}
// Set the vertex buffer.
{
mesh.vertices = vbi;
mesh.uv = ubi;
mesh.colors32 = cbi;
mesh.bounds = GetMeshBounds();
}
{
if (settings.addNormals) {
int oldLength = 0;
if (normals == null)
normals = new Vector3[vbiLength];
else
oldLength = normals.Length;
if (oldLength != vbiLength) {
Array.Resize(ref this.normals, vbiLength);
Vector3[] localNormals = this.normals;
for (int i = oldLength; i < vbiLength; i++) localNormals[i] = Vector3.back;
}
mesh.normals = this.normals;
}
// Sometimes, the vertex buffer becomes smaller. We need to trim the size of
// the uv2 and uv3 buffers (used for tint black) to match.
ResizeOptionalUVBuffer(ref uv2, vbiLength);
ResizeOptionalUVBuffer(ref uv3, vbiLength);
mesh.uv2 = this.uv2 == null ? null : this.uv2.Items;
mesh.uv3 = this.uv3 == null ? null : this.uv3.Items;
}
}
public void FillLateVertexData (Mesh mesh) {
if (settings.calculateTangents) {
int vertexCount = this.vertexBuffer.Count;
ExposedList<int>[] sbi = submeshes.Items;
int submeshCount = submeshes.Count;
Vector3[] vbi = vertexBuffer.Items;
Vector2[] ubi = uvBuffer.Items;
MeshGenerator.SolveTangents2DEnsureSize(ref this.tangents, ref this.tempTanBuffer, vertexCount, vbi.Length);
for (int i = 0; i < submeshCount; i++) {
int[] submesh = sbi[i].Items;
int triangleCount = sbi[i].Count;
MeshGenerator.SolveTangents2DTriangles(this.tempTanBuffer, submesh, triangleCount, vbi, ubi, vertexCount);
}
MeshGenerator.SolveTangents2DBuffer(this.tangents, this.tempTanBuffer, vertexCount);
mesh.tangents = this.tangents;
}
}
public void FillTriangles (Mesh mesh) {
int submeshCount = submeshes.Count;
ExposedList<int>[] submeshesItems = submeshes.Items;
mesh.subMeshCount = submeshCount;
for (int i = 0; i < submeshCount; i++)
#if MESH_SET_TRIANGLES_PROVIDES_LENGTH_PARAM
mesh.SetTriangles(submeshesItems[i].Items, 0, submeshesItems[i].Count, i, false);
#else
mesh.SetTriangles(submeshesItems[i].Items, i, false);
#endif
}
#endregion
public void EnsureVertexCapacity (int minimumVertexCount, bool inlcudeTintBlack = false, bool includeTangents = false, bool includeNormals = false) {
if (minimumVertexCount > vertexBuffer.Items.Length) {
Array.Resize(ref vertexBuffer.Items, minimumVertexCount);
Array.Resize(ref uvBuffer.Items, minimumVertexCount);
Array.Resize(ref colorBuffer.Items, minimumVertexCount);
if (inlcudeTintBlack) {
if (uv2 == null) {
uv2 = new ExposedList<Vector2>(minimumVertexCount);
uv3 = new ExposedList<Vector2>(minimumVertexCount);
}
uv2.Resize(minimumVertexCount);
uv3.Resize(minimumVertexCount);
}
if (includeNormals) {
if (normals == null)
normals = new Vector3[minimumVertexCount];
else
Array.Resize(ref normals, minimumVertexCount);
}
if (includeTangents) {
if (tangents == null)
tangents = new Vector4[minimumVertexCount];
else
Array.Resize(ref tangents, minimumVertexCount);
}
}
}
/// <summary>Trims internal buffers to reduce the resulting mesh data stream size.</summary>
public void TrimExcess () {
vertexBuffer.TrimExcess();
uvBuffer.TrimExcess();
colorBuffer.TrimExcess();
if (uv2 != null) uv2.TrimExcess();
if (uv3 != null) uv3.TrimExcess();
int vbiLength = vertexBuffer.Items.Length;
if (normals != null) Array.Resize(ref normals, vbiLength);
if (tangents != null) Array.Resize(ref tangents, vbiLength);
}
#region TangentSolver2D
// Thanks to contributions from forum user ToddRivers
/// <summary>Step 1 of solving tangents. Ensure you have buffers of the correct size.</summary>
/// <param name="tangentBuffer">Eventual Vector4[] tangent buffer to assign to Mesh.tangents.</param>
/// <param name="tempTanBuffer">Temporary Vector2 buffer for calculating directions.</param>
/// <param name="vertexCount">Number of vertices that require tangents (or the size of the vertex array)</param>
internal static void SolveTangents2DEnsureSize (ref Vector4[] tangentBuffer, ref Vector2[] tempTanBuffer, int vertexCount, int vertexBufferLength) {
if (tangentBuffer == null || tangentBuffer.Length != vertexBufferLength)
tangentBuffer = new Vector4[vertexBufferLength];
if (tempTanBuffer == null || tempTanBuffer.Length < vertexCount * 2)
tempTanBuffer = new Vector2[vertexCount * 2]; // two arrays in one.
}
/// <summary>Step 2 of solving tangents. Fills (part of) a temporary tangent-solution buffer based on the vertices and uvs defined by a submesh's triangle buffer. Only needs to be called once for single-submesh meshes.</summary>
/// <param name="tempTanBuffer">A temporary Vector3[] for calculating tangents.</param>
/// <param name="vertices">The mesh's current vertex position buffer.</param>
/// <param name="triangles">The mesh's current triangles buffer.</param>
/// <param name="uvs">The mesh's current uvs buffer.</param>
/// <param name="vertexCount">Number of vertices that require tangents (or the size of the vertex array)</param>
/// <param name = "triangleCount">The number of triangle indexes in the triangle array to be used.</param>
internal static void SolveTangents2DTriangles (Vector2[] tempTanBuffer, int[] triangles, int triangleCount, Vector3[] vertices, Vector2[] uvs, int vertexCount) {
Vector2 sdir;
Vector2 tdir;
for (int t = 0; t < triangleCount; t += 3) {
int i1 = triangles[t + 0];
int i2 = triangles[t + 1];
int i3 = triangles[t + 2];
Vector3 v1 = vertices[i1];
Vector3 v2 = vertices[i2];
Vector3 v3 = vertices[i3];
Vector2 w1 = uvs[i1];
Vector2 w2 = uvs[i2];
Vector2 w3 = uvs[i3];
float x1 = v2.x - v1.x;
float x2 = v3.x - v1.x;
float y1 = v2.y - v1.y;
float y2 = v3.y - v1.y;
float s1 = w2.x - w1.x;
float s2 = w3.x - w1.x;
float t1 = w2.y - w1.y;
float t2 = w3.y - w1.y;
float div = s1 * t2 - s2 * t1;
float r = (div == 0f) ? 0f : 1f / div;
sdir.x = (t2 * x1 - t1 * x2) * r;
sdir.y = (t2 * y1 - t1 * y2) * r;
tempTanBuffer[i1] = tempTanBuffer[i2] = tempTanBuffer[i3] = sdir;
tdir.x = (s1 * x2 - s2 * x1) * r;
tdir.y = (s1 * y2 - s2 * y1) * r;
tempTanBuffer[vertexCount + i1] = tempTanBuffer[vertexCount + i2] = tempTanBuffer[vertexCount + i3] = tdir;
}
}
/// <summary>Step 3 of solving tangents. Fills a Vector4[] tangents array according to values calculated in step 2.</summary>
/// <param name="tangents">A Vector4[] that will eventually be used to set Mesh.tangents</param>
/// <param name="tempTanBuffer">A temporary Vector3[] for calculating tangents.</param>
/// <param name="vertexCount">Number of vertices that require tangents (or the size of the vertex array)</param>
internal static void SolveTangents2DBuffer (Vector4[] tangents, Vector2[] tempTanBuffer, int vertexCount) {
Vector4 tangent;
tangent.z = 0;
for (int i = 0; i < vertexCount; ++i) {
Vector2 t = tempTanBuffer[i];
// t.Normalize() (aggressively inlined). Even better if offloaded to GPU via vertex shader.
float magnitude = Mathf.Sqrt(t.x * t.x + t.y * t.y);
if (magnitude > 1E-05) {
float reciprocalMagnitude = 1f / magnitude;
t.x *= reciprocalMagnitude;
t.y *= reciprocalMagnitude;
}
Vector2 t2 = tempTanBuffer[vertexCount + i];
tangent.x = t.x;
tangent.y = t.y;
//tangent.z = 0;
tangent.w = (t.y * t2.x > t.x * t2.y) ? 1 : -1; // 2D direction calculation. Used for binormals.
tangents[i] = tangent;
}
}
#endregion
#region AttachmentRendering
static List<Vector3> AttachmentVerts = new List<Vector3>();
static List<Vector2> AttachmentUVs = new List<Vector2>();
static List<Color32> AttachmentColors32 = new List<Color32>();
static List<int> AttachmentIndices = new List<int>();
/// <summary>Fills mesh vertex data to render a RegionAttachment.</summary>
public static void FillMeshLocal (Mesh mesh, RegionAttachment regionAttachment) {
if (mesh == null) return;
if (regionAttachment == null) return;
AttachmentVerts.Clear();
float[] offsets = regionAttachment.Offset;
AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.BLX], offsets[RegionAttachment.BLY]));
AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.ULX], offsets[RegionAttachment.ULY]));
AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.URX], offsets[RegionAttachment.URY]));
AttachmentVerts.Add(new Vector3(offsets[RegionAttachment.BRX], offsets[RegionAttachment.BRY]));
AttachmentUVs.Clear();
float[] uvs = regionAttachment.UVs;
AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.ULX], uvs[RegionAttachment.ULY]));
AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.URX], uvs[RegionAttachment.URY]));
AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.BRX], uvs[RegionAttachment.BRY]));
AttachmentUVs.Add(new Vector2(uvs[RegionAttachment.BLX], uvs[RegionAttachment.BLY]));
AttachmentColors32.Clear();
Color32 c = (Color32)(new Color(regionAttachment.R, regionAttachment.G, regionAttachment.B, regionAttachment.A));
for (int i = 0; i < 4; i++)
AttachmentColors32.Add(c);
AttachmentIndices.Clear();
AttachmentIndices.AddRange(new[] { 0, 2, 1, 0, 3, 2 });
mesh.Clear();
mesh.name = regionAttachment.Name;
mesh.SetVertices(AttachmentVerts);
mesh.SetUVs(0, AttachmentUVs);
mesh.SetColors(AttachmentColors32);
mesh.SetTriangles(AttachmentIndices, 0);
mesh.RecalculateBounds();
AttachmentVerts.Clear();
AttachmentUVs.Clear();
AttachmentColors32.Clear();
AttachmentIndices.Clear();
}
public static void FillMeshLocal (Mesh mesh, MeshAttachment meshAttachment, SkeletonData skeletonData) {
if (mesh == null) return;
if (meshAttachment == null) return;
int vertexCount = meshAttachment.WorldVerticesLength / 2;
AttachmentVerts.Clear();
if (meshAttachment.IsWeighted()) {
int count = meshAttachment.WorldVerticesLength;
int[] meshAttachmentBones = meshAttachment.Bones;
int v = 0;
float[] vertices = meshAttachment.Vertices;
for (int w = 0, b = 0; w < count; w += 2) {
float wx = 0, wy = 0;
int n = meshAttachmentBones[v++];
n += v;
for (; v < n; v++, b += 3) {
BoneMatrix bm = BoneMatrix.CalculateSetupWorld(skeletonData.Bones.Items[meshAttachmentBones[v]]);
float vx = vertices[b], vy = vertices[b + 1], weight = vertices[b + 2];
wx += (vx * bm.a + vy * bm.b + bm.x) * weight;
wy += (vx * bm.c + vy * bm.d + bm.y) * weight;
}
AttachmentVerts.Add(new Vector3(wx, wy));
}
} else {
float[] localVerts = meshAttachment.Vertices;
Vector3 pos = default(Vector3);
for (int i = 0; i < vertexCount; i++) {
int ii = i * 2;
pos.x = localVerts[ii];
pos.y = localVerts[ii + 1];
AttachmentVerts.Add(pos);
}
}
float[] uvs = meshAttachment.UVs;
Vector2 uv = default(Vector2);
Color32 c = (Color32)(new Color(meshAttachment.R, meshAttachment.G, meshAttachment.B, meshAttachment.A));
AttachmentUVs.Clear();
AttachmentColors32.Clear();
for (int i = 0; i < vertexCount; i++) {
int ii = i * 2;
uv.x = uvs[ii];
uv.y = uvs[ii + 1];
AttachmentUVs.Add(uv);
AttachmentColors32.Add(c);
}
AttachmentIndices.Clear();
AttachmentIndices.AddRange(meshAttachment.Triangles);
mesh.Clear();
mesh.name = meshAttachment.Name;
mesh.SetVertices(AttachmentVerts);
mesh.SetUVs(0, AttachmentUVs);
mesh.SetColors(AttachmentColors32);
mesh.SetTriangles(AttachmentIndices, 0);
mesh.RecalculateBounds();
AttachmentVerts.Clear();
AttachmentUVs.Clear();
AttachmentColors32.Clear();
AttachmentIndices.Clear();
}
#endregion
}
}